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A formula is given by which a Gegenbauer polynomial whose argument is the cosine of twice an
angle can be equated with a finite, alternating series of products of Gegenbauer polynomials

whose arguments are all cosines of the angle.

Gegenbauer polynomials are a particularly useful set of
functions in mathematical physics. They include, as specific
cases, the Legendre and Chebyshev polynomials, and are
related to other special functions, such as the associated Le-
gendre functions and the Hermite and Jacobi polynomials.
Definitions and results concerning Gegenbauer polynomials
appear in numerous sources and have been collected and
compiled in various invaluable reference texts. '

Among the known results concerning the Gegenbauer
polynomials C “(x) are the following (A15£0; m = 0, 1)
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where P# () is a Jacobi polynomial in y, , F, (a,b;c;y) is a
hypergeometric function, and the I" () are gamma
functions.

If the substitution x = cosi@ is made in (1) and
x = co0s26 is made in (2), then these equations are seen to be
“half-angle” and *“‘double-angle” formulas, respectively.
They represent Gegenbauer polynomials of the correspond-
ing argument by other special functions which are functions
of cosé. It may prove useful, however, to have half-angle and
double-angle formulas which express Gegenbauer polyno-
mials in terms of themselves. Although no particularly ele-
gant formula presents itself for the half-angle case, it is possi-
ble to obtain such a result for the double-angle case, as will
now be done.

In order to proceed, the following results will be need-
ed. First, a generating function for Gegenbauer polynomials,

(I—22z+2) "= S Ci0z", |z/<1, A0, ()

n=20
and second, a statement of parity,
Ci(—x) =(—=1)'Cix). “)

An essential decomposition

(1 — 2c08262* + z*) = (1 — 2c0860z + 22)(1 + 2086z + 2%)
&)
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can easily be verified by using the trigonometric identity
cos26 = 2cos %4 — 1.
Using (3) and (5), the following can be written,
= i i CHcosh)C % (cosf)z' + &,
I=0k=0
(6)

The product of series on the right-hand side of (6) can be
rewritten as a “Cauchy product” ° so that (6) becomes

S Cicos260)2"
n=0

S Clcost)?"= 3 i C? _ 1 (cosB)CE( — cosd)z™.
n=0

m=0k=0
(7

Equating coefficients of like powers of z in (7) and using (4)
gives, for m = 2n

C?(cos20) = i (— 1)*C#(cos®)C1, _ ,(cosh), (8)
k=0
and form =2n + 1
2n + 1
0= > (- 1)*C1(cosf)C3, , | _ i (cosh). C))
k=0
The result (9) is not particularly noteworthy since its right-
hand side is identically zero (the first half of the summation
cancels the second half); (8), however, is a new and perhaps
more notable result: a double-angle sum formula for Gegen-
bauer polynomials (1-40).
In closing, I would like to thank the referee for his use-
ful comments.
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The applicability of the widely used method of variation of action is discussed by investigating the
transverse stability of the kink solution of the nonlinear Schrodinger equation and the bell
solution of the Kadomtsev-Petviashvili equation. An exact calculation shows that neither
instability nor stability can be predicted correctly by the variation of action method. The reasons
for that defect are discussed and the correct stability regions are presented.

I. INTRODUCTION

In many areas of nonlinear physics ' field equations
occur which allow solitary wave solutions. Some of these
systems are completely integrable and the initial value prob-
lems have been solved by the inverse scattering technique. *
In one dimension, emerging from multisoliton collisions the
solitary wave solutions have the same shapes and velocities
with which they entered, thus satisfying the requirements for
considering them as solitons (kinks). !

However, the so far undivided picture of stability
breaks down when a second space dimension is allowed for.
Calculations show that the soliton solutions of the nonlinear
Schrodinger (NS) equation are transversely (perpendicular
to the soliton motion) unstable ° and that the kink solution of
the sine-Gordon equation is transversely stable. ' For two-
dimensional Korteweg—de Vries (KdV) equations, the sta-
bility behavior depends on parameters which discriminate
between different types of generalizations.  Beyond that, the
situation is not very clear for other solutions or different field
equations. For example, one is tempted to conjecture that
the shock solutions of the NS equation are transversely sta-
ble, in agreement with the claim for the Higgs field equa-
tion. ” The latter statement as well as calculations for other
field equations are based on a widely used method, the so
called variation of action method (VAM). *

In this paper, we discuss the applicability of this meth-
od by investigating the NS and KdV equation, which de-
scribe a broad class of nonlinear physical systems. °

We show that some previous proofs of transverse stabil-
ity of kink solutions were incomplete. In the case of the NS
equation, instead of stability instability occurs, in agreement
with the small k prediction by Zakharov and Rubenchik. >
On the other hand, the VAM can predict instability in some
region where a more exact calculation proves stability. The
latter failure of the VAM will be demonstrated for the exam-
ple of the Kadomtsev—Petviashvili (KP) form of the KdV
equation. We shall therefore conclude that neither instabil-
ity nor stability can be precisely predicted by the VAM.

The paper is organized as follows: In Sec. IT, we review
the VAM and summarize the results for the kink solution of
the NS equation which follow by that method. In Sec. I1I, we
reconsider the transverse stability of the kink solutions of the
NS equation. Deriving a general energy principle we prove
instability of the kink solution. In Sec. IV we reinvestigate
the transverse instability of the KP equation and compare
the results with the predictions by the VAM. '® We explicite-
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ly show that previously unstable regions are actually stable.
Possible generalizations for other field equations are dis-
cussed in Sec. V.

Il. THE VARIATION OF ACTION METHOD

To demonstrate the VAM ® we consider the NS
equation

i+ Vi — p* =0, (1)
and discuss the transverse stability of the plane kink-type
solution

¥ =G (x) exp( — 2in 1), (2)
where _
G (x) = V 27tanhyx. (3)

The longitudinal stability of this solution has been investi-
gated previously. !

For the NS equation, the variation of action can be writ-
ten in the form

5S=5jdxdydt(f—fw):0. ()

Here, the vacuum has been subtracted and the Lagrangian
7 is given by

L= — [ — $Y*) + VI 4 LWY*)’]. (5)
In the VAM, the test functions are constructed from the
solitary wave solution by perturbing its shape and phase.

In the present case, the appropriate choice, being identi-
cal to that used by Makhankov, ’ is

Y = A tanhBx exp(iP). (6)

Here, the coefficients 4, B, and ¢ depend on the transverse
coordinate y and the time ¢; the unperturbed values are
4, =), By=n,and y = — 297,

Inserting Eq. (6) into the Lagrangian (5) and perform-
ing the x-integration in the action integral, we obtain

S=2 de dt [A AP, +P,)/B+34*/B
2 1 3
—24’B+A}/B+(47),(1/B),—I4°B}/B*|, (7)

where I = fgdz z°sech® z,> 0.,
Taking the variations with respect to @, 4, and B we
obtain the Euler equtions

(4%/B), + 24P /B), =0, (®)
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(@, + P +34>—2B*—(4,/B),B/A — (1/B),,B

—IB,*/B*=0, )
(D, + P+ 34"+ 2B+ 4.2/4° — (47, /4>
—2I(4°B/B°),B*/A* - 3IB}?/B*=0. (10)

Linearizing in the form

A=A+ \/ZA1 exp(iky + yt),
B = B, + B, exp(iky + yt), an
D =D, + D, expliky + yt),

we get the dispersion relation

(§+x2/2+2;(21)1‘2= — [(i;i+x2)(§+2x21)

+ GG+, (12)

where the abbreviations x = k /7 and I" = y/k% have been
used. Equation (12) clearly shows

I*<o0, (13)

corresponding to stable perturbations.

In principle, the more general ansatz 1 = A4 tanh(Bx

+ C) exp(ig ) should be used instead of (6). However, for the

present case, the linearized Euler equations yield
C, = const, and the dispersion relation (12) will not be
changed.

At this stage one comment is in order: By this method,
in general, stability cannot be concluded since it restricts the
perturbed states to a certain subclass, here the translation
mode and odd functions in Bx 4+ C. And indeed, in Sec. III,
we derive an energy principle from which instability can be
concluded in the present case.

HI. AN ENERGY PRINCIPLE FOR THE NS EQUATION

We now reconsider the transverse stability of kink solu-
tions of the NS equation and derive a sufficient criterion for
instability. Here, we only report the linear calculation; the
generalization to the full nonlinear treatment is similar to
that presented previously by the authors. ®

Writing a perturbed solution of Eq. (1) in the form

¥ =(G+a+ib)exp(—2n?t), (14)
where G is the zeroth order solution (3), we obtain

a,=H b, (15)

b= —H _a. (16)’
The operators H , and H _ are defined by

H = -—V'+G*—74 an

H, = —V*4+3G*~29% (18)

After Fourier transformation, they can be written in the
form

2

H, = - a- + k ? — 6m’sech’nx + 477, (19)
dx?
d 2

H = — = 4 k?—29*sechypx, (20)
dx?

where & is the transverse wavenumber.
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The spectra of these operators are well known '%: H
has only one discrete eigenvalue k > — 77* and the continuum
starts at k> H __ is positive definite (for k5£0) with discrete
eigenvalues k 2 and 37” + k ; the continuum starts at
49* + k2 We note that the eigenfunction of H _ corre-
sponding to the eigenvalue k > — 7?2, i.e., sechzx, is even.

H , can be inverted and the functional

L=%fdx¢’*f11'¢, 1)
where ¢ = H |, a,, satisfies

(L,/L)>0. 22)

This result is similar to an energy principle derived by Laval
etal. '* in a completely different connection. The growth rate

(23)

As long as the discrete eigenvalue of H _ , i.e., k> — 7%, is
negative, transverse instability occurs. This sufficient insta-
bility criterion suggests a cutoff at ¥ = k, = 77, and indeed a
Ljapunov functional for stability proves the result k£ < 7 be-
ing a necessary and sufficient criterion for transverse insta-
bility of kink solutions.

We want to emphasize that the method proposed in this
section has several advantages: It clearly shows which
modes cause instability, i.e., those modes must have a com-
ponent in the direction of the eigenfunction belonging to the
negative eigenvalue of # _ . Since that eigenfunction is
sechnx, i.e., an even function in x, it is obvious why the VAM
fails. Furthermore, Eq. (23) is the result of a variational prin-
ciple for the growth rate and allows the determination of the
values of y in the whole unstable & region by standard nu-
merical methods. The derivation of a necessary and suffi-
cient instability criterion was beyond the scope of previous
instability calculations by Zakharov and Rubenchik, > who
investigated only the small & limit.

IV.ALJAPUNOV FUNCTIONAL FOR THE KP EQUATION

We now turn to the question whether at least the predic-
tions of instability by the VAM are correct. For this discus-
sion we choose the KP form of the KdV equation as a con-
crete example.

The transverse stability of soliton solutions of the KP
equation,

Pix + (¢7¢)x)x + Prxxx — ¢yy = O’ (24)

has been already investigated analytically ®'° and numeri-

cally. '* The result of the calculation by the VAM ' is that
instability exists below a certain cutoff, X < k_, where

k. = 632 (25)

Here, & is the transverse wave number (normalized by the
inverse electron Debye length) and the parameter 7 follows
from the zeroth order plane soliton solution,

@ = 129’sech’np(x — x, — 47°t). (26)

The analytical result of Kadomtsev and Petviashvili ® is re-
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stricted to the small & limit. Zakharov ° has presented a suffi-
cient criterion for instability in the regime k < (3) %5 %; the
stability outside that region has only be treated by the VAM.
We shall show that the VAM result of instability is not cor-
rect in the region

Vi3t <k <672 @n
This actually means that a stable physical system with a peri-
odicity length L, < 27/(3'/*?), is found to be unstable by
the VAM.

In order to prove the assertion that in the region (27) the
system is stable we derive a sufficient criterion for stability
using Ljapunov’s lemma.

For a reversible system, a Ljapunov functional for sta-
bility should be constructed from the constants of motion.
This leads to the ansatz

) () G e

L= |dri{{ == —_ = 4

fd {(Bx + dx dy e
1

3 990\ 2.2 1 5
- <% —47°py" + —po|- (28)
3 Ix 3
Now we discuss whether L fulfills all conditions of Ljapun-
ov’s stability lemma: The condition dL /d1<0is trivially sat-
isfied; it remains to show that an upper and a lower bound of
L can be constructed in terms of the norm |lg — @, || >
We define the norm by

o= o]+ [(2) 2] v} oo

Introducing the even and odd parts of the perturbed state @,
e,

a = g () +¢(—x,y)lzj—“,
(30)
b’ = 4le () -¢a(—x,y)1z—j%,

we can, to lowest order in the norm of the perturbation,
express the functional L in the form

L, = Jd]“ (aHa + bHD). 31
The fourth order operator
¢ d d 2 d? 2
H= " 4+ 120> —sech’npx — — 4> — + k% (32)
i T A T e

has the lowest eigenvalue — 317 * + k2. The corresponding
eigenfunction is sech 7x tanh 7x. Thus, for k>3 72, the
functional L, is positive and can be estimated in terms of the
norm. The higher order contribution L — L, can also be
estimated by the norm using standard mathematical tools,
e.g., Schwarz’s and Sobolev’s inequalities. Therefore, L is
indeed a Ljapunov functional for k> (3) /2 % and in con-
trast to the previous result '° perturbations with wavenum-
bers & in the region

Vg <k<6r, (33)

are stable. This yields to the additional conclusion that even
the instability predictions by the VAM are sometimes doubt-
ful. Somehow this is expected: The variational principle is
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for the action and not for the growth rate. Therefore, trial
functions approximating the action do not necessarily imply
a proper dispersion relation. In other words, it is by no
means clear that those trial functions are approximate solu-
tions of the dynamic equations, when the whole x-depen-
dence is retained.

We note that it is possible to derive an energy principle
analogous to that found in Sec. IIL. The evaluation of this
principle leads—in agreement with findings of Zakharov *—
to the result that for k < 3 25 % instability occurs. The deri-
vation of a necessary and sufficient criterion for stability was
beyond the scope of previous works.

V. SUMMARY AND DISCUSSION

In this paper, we discussed the transverse stability of
some one-field solitons. We showed that conclusions based
on the VAM should be used with care: In some cases, neither
stability nor instability can be predicted correctly. We be-
lieve that this defect is somehow inherent to this method
since the variational principle is for the action and not for the
growth rate. As the interrelation between these two different
problems is not clear, the proper choice of the trial functions
is somehow a game of chance.

We have exemplified the failure of the VAM for two
systems: On the one hand, we demonstrated for the KP soli-
tons that a physically stable system can be VAM unstable.
We showed this by constructing a Ljapunov functional for
stability. It is noteworthy that this calculation can be ex-
tended to find a necessary and sufficient criterion for stabil-
ity. The reason why the unstable trial functions approximat-
ing the action do not yield the correct dispersion relation is
that they are not approximate solutions of the dynamic equa-
tions when the whole x-dependence 1s retained.

On the other hand, we showed that the kink solution of
the NS equation are actually unstable but VAM stable. An
explicit expression for the growth rate was obtained in the
whole k range which can be evaluated by standard numerical
methods. It is important to note that this procedure can also
be extended to give a necessary and sufficient instability cri-
terion. The reason why the prediction of stability by the
YV AM cannot be accepted in general is obvious. By the latter
method the possible forms of the perturbed states are re-
stricted in an unjustified manner.

We conclude with the remark that also for other field
equations, e.g., the complex Higgs field equation, the pre-
vious predictions based on the VAM should be critically
reinvestigated. Our results of the NS equation indicate that
the kink solution of the complex Higgs field equation should
be also transversely unstable, !° in contrast to the result of
the VAM. 7 The reason is that in the limit of a weak time
dependence (i.e., small phase shifts and growth rates) the
Higgs field equation reduces to the NS equation.
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When does a projective system of state operators have a

projective limit?
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In analogy to Kolmogorov’s classical extension theorem, we establish necessary and sufficient conditions
under which a family { W;,,--,1,)] of state operators, defined on the finite tensor products
H,®«® , of some family {1,:t€T} of complex Hilbert spaces, extends to a state operator on

the infinite tensor product ® . #,.

1. INTRODUCTION

One of the fundamental theorems!'? of classical prob-
ability theory establishes the conditions under which a fam-
ily {g,,. . ,} of probability measures, defined on the finite
products ®;_ ({2,,./,) of some family {(£2,,.«/,) : teT } of
measurable spaces, has a unique projective limit, that is an
extension to a probability measure on & ,_,{{2,,.%/,). This
theorem, originating with Kolmogorov,® is equally funda-
mental for the interpretation® and for the application' of the
classical probability calculus. Accordingly, any systematic
development of a non-Boolean probability theory has to in-
vestigate the analogous problem.

The most important and most studied case of a non-
Boolean probability calculus is found in the Hilbert space
formalism of quantum mechanics.”” In this frame, the event
structure is represented by the lattice 2 (%) of all ortho-
gonal projection operators on a complex separable Hilbert
space ¥, the classical probability measure is replaced by the
quantum state,? defined as a o-orthoadditive functional m:
2 (#)—[0,1] with m(1) = 1; and the composition of the
event structures of different systems is accomplished via the
tensor product of the corresponding Hilbert spaces.” As
shown by Gleason,'" every quantum state m can be repre-
sented (in the case dim. %> 3) as m(P) = trWPby means of a
unique positive linear operator Won % with tr W = 1 which
is therefore called the state operator or statistical operator
(STO) corresponding to m. And since every positive linear
operator ¥ on % with trV = 1 yields a quantum state by
PrtrVP, it is natural and justified to regard the state opera-
tors themselves as the quantal counterparts of the classical
probability measures.

These parallels between the classical and the quantum
probability calculus raise the following question. Given a
family { W, | of STO’s defined on the finite tensor pro-
ducts ¥, & -~ ® 7%, of some family {77, : r€T | of complex
separable Hilbert spaces: On what conditions does the family
{ W, ..,} have a projective limit (i.e., an extension to a STO
on ®, % ,)and when is this limit unique? The first part of
this question has recently been answered by Christensen''
for the special case that all given STO’s are tensor products
of “‘one-particle states.” For this case, Christensen estab-
lished a necessary and sufficient condition for the existence

of a projective limit.

In the present paper, we give a general answer to the
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first part of the above question. In Sec. 2 we establish neces-
sary and sufficient conditions under which a family
{ Wi.. ., of STO’s has a projective limit. In contrast to the
classical result mentioned at the beginning, such a projective
limit (if it exists at all) is in general not unigue; this ambiguity
will be investigated in a forthcoming paper.’? In Sec. 3 we
consider the case of product STO’s and show how to recover
Christensen’s condition as a special case of our conditions of
Sec. 2. Finally we add an Appendix where we compile the

definition and some basic properties of the partial trace.

After this manuscript was completed, the author re-
ceived a preprint by A. Bartoszewicz" which contains a re-
lated result on the extension of a family of STO’s to a STO
defined on an incomplete tensor product of given Hilbert
spaces.

2. NECESSARY AND SUFFICIENT CONDITIONS

in the following, “Hilbert space’ stands for “‘complex

Hilbert space of dimension»1.” Let %" be a Hilbert space.
By (%), 7 (F), (-}, ||| and ||-||, we denote the algebra
of all bounded linear operators on %, the trace class in

% (K), the scalar product in %", the operator norm on
(%) and the trace norm on .7 (¥"), respectively.’* " To
tackle our problem, we need some preliminaries on the infi-
nite tensor product of Hilbert spaces (cf. Ref. 16): Let {77,
: teT } be a nonempty collection of Hilbert spaces. To every
@M C T, we associate the complete tensor product
KM= ® K for F' we write 7. An element
a= ® , ra, inF with |a,| = 1 (VteT) is called a product
unit vector (PUV). Two PUV’s o, 3 are called equivalent
(written a ~f3), if 2.5, |1 — {@,,8,) | < «.The equivalence
relation ~divides the PUV’s into equivalence classes a, b,
the set of which we denote by I". The PUV’s in @€/ span a
closed subspace /? of % which is called the incomplete
tensor product (ICT) of the %", ’s with respect to a. If

a = ® ,a,€a, then the set of all PUV’s &, £, such that ¢,
=3, for all but a finite number of t€T contains many com-
plete orthonormal systems of PUV’s in %7, which we call a-
bases for short. Thus /#7, can be thought of as being “‘gener-
ated” by any PUV in a; if we want to refer to a particular
generating PUV in a, say o, we also write. ¥ Ta] for )7 . The
complete tensor product }‘ is the direct sum of all ICT‘S,
K= B4 r 4 By Q, wedenote the orthogonal projection
from % onto .# ,. Hence 2, ~Q, = 1, where 1,, denotes
the identity operator on %™, If K40 is a finite subset of T,
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then all operators of the form Y® 1, with YeZ(#*)
commute with Q, forallael". If {¢, : teD }, DC T, isacollec-
tion of unit vectors €,€#”,, then we abbreviate ® €, by
€[D];expressionslike ® €[¢ Jor Y ® 1, aretoberead as g or
Y, respectively.

For §£4 C BC T, we denote the partial trace from
T(FBYto. T () by @(4,B) and write @, for @ (A4,T).
The definition and several properties of the partial trace are
complied in the Appendix.

After these preliminaries we can now state our problem
more precisely. Consider a family { %7, : teT }, T80, of Hil-
bert spaces'” and let % be the directed set of all finite non-
empty subsets of 7 directed by inclusion.

Definition: A family [ W, : Ke# | of STO’s W
e.7 () s called a projective system, if W, = @ (K,H)W,,
for all K,He* with KCH. A STO Ve7 (7)) is called a
projective limit of { W}, if W = @,V for all Ke5 .®

As in the classical case we search for a necessary and
sufficient condition under which a family { W : Ke¥ | of
STO’s W, on ™ has a projective limit. According to Cor-
ollary A.5(i), the consistency of { Wy 1, i.e., the property Wy

= @ (K,H)W,, for KC H,is an obvious part of such a condi-

tion. Therefore, we need only consider projective systems.

Theorem 2.1: A projective system { W, : Ke# | of
STO’s has a projective limit if and only if there exists a count-
able set {p €R : 0€S, p,>0, = _p, = 1} and, to every o<€S,
there exist families {37 : 1T |, {@ ¢ : K& | of unit vectors
B7e% ,and @ %% such that

tim | | Wy~ 3 @) | =0 @.1)
o€eS 1
and
lip( sup lp % — @ % @B TH \KJII) —0. @2
He. »
KCH

If these conditions are satisfied, then the nets .
(p % ®B [T \K ]) converge to unit vectors @ “ in # and
the STO X ¢ p P (P ) is a projective limit of { Wi |.

Proof: (I) Assume that the conditions (2.1) and (2.2) are
satisfied. If we define ¢ 3: = ¢ 9 B°[T \K ], then

ler—exkl=leh—ekeB IH K]
for all K,He.” with KC H, and by (2.2), (¢ ) is a Cauchy

net in ¥ . As a consequence there exists, for every oeS, ex-
. . —~ « o)
actly one unit vector @ : = limgg ¢ in 7% and we get

lim (§5%.Xp %) = (& 7.XP7) 2.3)
for all Xe 3 (¥#). For H.Ke.7, KC H, and Ye B (),

<¢3(I:!’Y® lT\KﬁZ) = <¢ZI’Y® ]H\K¢)?1)’
and so by (2.3)

ligﬂ (PmYoly xof) =(P°Yel, 4@).
By (A1) and the dominated convergence theorem, this ex-
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tends to

lim try, [(Y® ly.x) Y PP ‘I:)]

aeS
—ur,[(¥e1, 0 3 p,P(@ ")]. 2.4)
aesS

With Uy : = Wy — 2, p. P(¢p %), condition (2.1) implies
that

lim tr, [(Y® 1, )U,]=0. (2.5
H

From @ (K,H)YW,, =
trg [YW] =try[((Yol, OW,]

x We get

=try[(Y®l, Uyl + tr,,[ (Yol «)
X 3 pP@ ] 2.6
oe§

Combining (2.4)—(2.6) we obtain
tr YWyl = 17| (Yo 1, ) 5 p.P @)
oS

for all YeZ (™), Ke.# which implies, by Theorem A.1,
that

Wy=0x 3, pP (@,
oeS
for all Ke.# . This proved the sufficiency of our conditions
and the second assertion of the theorem.

(IT) To prove the necessity, we begin with

Lemma?2.2:Leta = ® a,beaPUVin % andlet P bea
unit vector in #[a]. Then there exists a collection { g,
: Ke# } of unit vectors @, in % such that

lim |04 P(®) — P(pi)]l, =0, Q.7
and
lim ( sup |l@y — px@a[H\K ] II) =0. (2.8)
He.'s
KCH

Proof: Let {§": vel | be an a-basis of PUV’s £~
= ®,£;in #Ta]. Then there exists a countable subset
M C I such that

D=3 x£"
veM

To every veM we have a smallest finite set B, C T such that
&V =a, fort¢B, . Hence Z: =u,_,, B, is countable and

oy x£1Z1)ealT\Z].

veM

> x =1

veM

We fix some element 7 in M with x_=£0 and associate, to
every Ke with B_CK, the unit vectors

S AKEVIK], in HK

B.CK

Pt =

and
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Gx: =gx0alT\K1= S i(K)E", in 7,
B CK
where
. 12
£ =x( 3 fup) sy
B CK
Hence
limdg, =1 (2.9)
K
and
10 —¢dl=|| T 2N+ 3 xe
B.CK B.CK

3, beneon) (5, )

(l=dy)+(1—dg )7 (2.10)
for all Ke.# with B_C K. By Corollary A.4(c),
OkP (§x) = P(pk) (2.11)

From (2.9)—(2.11) and from Corollary A.4(f) we finally con-
clude that

li;n Ok P(®) — P(gg)ll =0.

In analogy to (2.10) one finds

len —pxeal HNK]||<dy(l —dy) +dy(1 —d g 27

which yields assertion (2.8). ]
To finish the proof of Theorem 2.1, we have to extend

the result of Lemma 2.2 to an arbitrary STO on # . We first

consider a unit vector ¢ in # and set I' : = {ael™ : Q =0}

Ya: = |Qu¥|. Forael, ¥,: =y, 'Q,¥isaunit vector in
7, and

v= 3 Voo

acl,

From 2, Q,=1and {Q, Y& 1+ ] =0 we obtain

(Yo ly JPW) = Y (4QYelr )QY)

acl”

(2.12)

= Z y§<¢a)Y® 1T\K¢a>

acl,

_ tr[(Y@ Irg) Y yiP(rﬁa)]

acl”,

for all YeZ (#7%), Ke# which implies that

OP () = O 2 ya)

acl,

(2.13)

for all Ke.7 .

Finally we consider an arbitrary STO W on R (3
W =X, c.P()is adiagonal representation of W with¢;> 0

{¥iel), then it follows from (2.12), (2.13), and Corollary
A 4(h) that
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@KW= Z z Ciylga@KP(é‘fa)’
icl acl’,
Where ri L= {aer Qagl:/’éol’yia L= HQaé‘fH’ and gia
: =y, 0., If we replace the double index i, a in (2.14a)
by a single index o and set p,, : = ¢, y2, then (2.41a) reads

@KW = 2 p(r@KP(;a)y

oeS

(2.14a)

(2.14b)

with2 _cp = landp_>O0forall oeS=u, I, Here every
unit vector ¢ is contained in an ICT generated by some
PUV,say 87 = & ,37. Applying Lemma 2.2 to each sum-
mand of (2.14b) we obtained, for every o€S, a family {57
:#eT | ofunitvectors 8 Je#” and a family {¢ 5:Ke7 | of unit
vectors ¢ %e.%* which satisfy (2.2) and
im0, P&,) — Ple )], =0. (2.15)

From
,

||oww— Sp. P2
SPAOPE,) — Pp z)}Hl

oeS
’ aes§

< ZPU”@KP@U)_P(¢) 7()||1<2’

oeS

and from (2.15) we finally obtain

lim ’ ’@KW_ S pLP@%)
oeS

-
1

which shows the necessity of our conditions. O

It can be seen from (2.13) or (2.14a) that even if | Wy |
has a projective limit, this limit is in general not unigue,
which is in striking contrast to the classical situation. In a
forthcoming paper'? we will investigate the structure of the
set of all projective limits belonging to a given projective
system of STO’s.

Applications of theorem 2.1 will often be concerned
with the special case T'= N." In this case it is expedient to
use N itself with its natural ordering, instead of 7, as the
directed set: Let (57,),.y be asequence of Hilbert spaces and
(W) ,en asequence of STO's W, 7 (¥ ,), ™" : = @1,
The sequence (W,) is called projective if, in self-explanatory
notation, Omn+ HOW,, , =W, forall neN. ASTO Von
K = @ 3, is called a projective limit of (W) if W,

= @, V for all neN. By an obvious adaptation of the proof of
Theorem 2.1 we obtain

Corollary 2.3: A projective sequence (W),) has a projec-
tive limit if and only if there exists a countable set {p
€R : 0eS,p, > 0,2 p, = 1] and, to every geS, there exist se-
quences (B),.n» (@ 9),e~ Of unit vectors B e, ¢ jeX™
such that
lim

n oroc

w,— Ugsng(qﬁZ)HfO,

and
lim (sup leo, —@oe ®}";,,+1/57||) =0.
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In this case, the sequences (pre ®,. ,B7) convergestrong-
ly to unit vectors @ “in % and the STO 2 0, P(@ )isa
projective limit of (W,).

3. SYSTEMS OF PRODUCT STATES

In this section we consider projective systems of prod-
uct STO’s. It turns out that, in this special case, the necessary
and sufficient conditions of Theorem 2.1 take a particularly
simple form.

Let { %, : teT }, T+0, be a family of Hilbert spaces and
let a STO X, on #, be given for all teT. Each X, has a diag-
onal representation

X= 3 q/P@,) 3.1

=1
witha,a,> =6,,9,,>9,,>>0and £ g, = 1. Let Gbe
the set of all mappings g:7—N such that g(¢) = 1 for all but
finitely many reT; in particular, G contains a mapping e with

e(t) = 1 for all £. The family {X, | uniquely determines the
nonnegative real numbers

g (K): = H Gy 9 =9(T);
ek
for all geG, 04K CT.
Lemma 3.1:
>0 l
o] Zg=rm s ey

geG

Proof: Obviously, B>q,>0, and ¢, = 0 implies that

B = 0. Let A be any nonempty finite subset of G and define
= [teTg(t)#1}, T (H): = U,y T, and

Hl (8eG:T, CT(H)}. Then

qu\qu— I iqn}qe(T\T(H))

geG [ 1€T(H)i=1
=g (T\TH))L

Since H was arbitrary, B<1. So it remains to show thatg, >0
implies that B> 1. Assume g, > 0. Then there exists an as-
cending sequence of finite subsets of T, 94K, CK,C - CT,
such that

lim ¢.(T\K,) = L.
With G,: = {geG : T, CK, } we find

B> Sq.=|[[ 3 4l T \K,) = q(T\K,)
G

teK, i=1
for all neN which implies that B> 1. O

Theorem 3.2: Let [ X,: tT |, G and g (K ) be defined as
above. Then { ® X, : Ke# | is a projective system of
STO’s; and this system has a projective limit if and only if
I1,. || X || > 0. In this case

Vi= 2 qu( ®a,g<,>) (3.2)

geG

is a projective limit of { ® ,_ X, }.
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Proof: (I) Obviously, { ® X, 1} is a projective system.
Suppose that it has a projective limit. Then we infer from
Theorem 2.1 that, in the notation of this theorem,

J ® X, — Y p.Plpg)
ek e S
By [X — Y|l >|X ~ Y[|>| |X || — [ Y]l |, this yields

i - || 5e.P@||| <o

ek
Since ||Z_p,P (@ %)||>max{p, :0eS } >0, we obtain

lim
K

=0.
1

hm

[[IIX.|>max{p, : oS } > 0.

€T

(II) Suppose that I1,_,[|X,|| > 0. By ||X,|| = g,, and
Lemma 3.1, this implies that 3, ¢, = 1. Hence the sum
(3.2) contains only countably many nonzero terms and we
conclude from Corollary A.4(h) that Visa STO on 2. With

8. —
¢K"‘ ® alg((),
ek

we get

, =0, (3.3)

’¢%—¢%® 5 @

eH

9.1P(@%)

g(1)

forall KCHe 7.
' ® Xi— 3 4P @5

geG

S (g &) -

geG(K)

<

,

N ‘ =S,(K) +5:(K),  (34)
1

>

geG.(K)

where G(K ): =
SI(K) = Z

2cG\(K)

(g€G: (1) = 1VHK |, Gy(K): = G \G\(K).
‘qg(K) - qg I

=(1-¢.(T\K) I

2eGU(K)

q.,(K)

= —-q.(T\K)]] i 9: =1 —¢.(T\K);

ek i=1

SZ(K) = Z qg'
8eGAK)

Since 2. g, = 1, the nets (S,(K ))« and (Sx(X )) converge
to zero and we conclude from (3.4) that

li’r<n rEK 2 .Plo%) ( =0. (3.5)
Equations (3.3), (3. 5) and Theorem 2.1 show that Visa
projective limit of {® X, }. 0

Theorem 3.2 can be proven just as simply without re-
course to Theorem 2.1. But the above proof shows explicitly
how the conditions of both theorems are related in the spe-
cial case of product STO’s.
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APPENDIX: THE PARTIAL TRACE

In this Appendix we give a short survey of some impor-
tant properties of the partial trace.

Preliminaries: Let 77" be a Hibert space. For A€ % (#7),
we define |4 |: = (4 *4 )"%and ||4 ||,: = tr|4 |; hence
|4 ])<||4 ||,- The trace class 7 (¥ ): = {Ae B (F):||4 ||,
< oo | is a Banach space with norm ||-||, which contains AX
and X4 for Ae % (#"), Xe.7 (#°). The trace has the proper-
ties trdX = trXA4 and

[trXd {<|IX ()14 | (A1)

for all Xe.7 (%), Ac % (). For further details, the reader is
referred to Refs. 14 and 20.

We consider now two Hilbert spaces %", %", and set
K o=X 1% and T =9(F ), B = B(K ) for
i=1,2,3. By tr; and 1, we denote the trace on .7, and the
identity operator on %", respectively.

T heorem A.1°: To every X in .7 ,, there exists exactly
one X in .7, such that

trX(4e1,) = tr, X4
for all Ac# .

This theorem establishes a mapping .7 ,—.7", by
X+-X which is called the partial trace (or reduction) from
. yto 7. This name indicates that the mapping X +str,.X
can be divided in two steps, X i—@X (—tr,@X = tr,X, at
which the mapping X —>@®JX appears as the partial evaluation
of the trace on .7 ,.

Theorem A.2%': Let { @,] be a complete orthonormal sys-
tem in % ,. Then

(@@XB) = 3 (aep.XBep)

fed

(A2)

for all a,8e. %", and Xe.7,. There relations determine the
mapping @ uniquely.

Theorem A.3: |©X ||,<||X ||, for all Xe7,. For X>0,
[OX ||, = [I1X ..

Proof:||@X ||;: = tr,|OX | = tr,U*OX = tr(U* 9 1,)X
<X JIU* ® L,|| = ||X ||, where U is the partial isometry in
the polar decomposition @X = U |@X |."* The second asser-
tion is an immediate consequence of (A2). O

We note in passing that, if dim.%", > 1, @ is not a con-
traction with respect to the norm ||-||. From Theorems A.1 to
A.3 one easily derives a lot of interesting properties of @.

Corollary A.4: (a) @ is linear.

(b) @ preserves order, positivity and self-adjointness.
©OXeY)=({r,Y)Xforall Xe7,, Ye7,.

(d) @ is surjective.

(e) If dim A", = oo, then @ is neither ||-||-bounded nor
[|]|-continuous.
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®I|OP (@) — OP@)[,<2V 2||p — ¥||forany twounit
vectors @, e F’,.

(g) @ is continuous in the ||-||,-topology.

(h) Let ¢, be an absolutely convergent series of com-
plex numbers and let (X;) be a uniformly ||-||,-bounded se-
quence of X;,€7 ;. Then £°¢, X, isin 7, and

o3 cx = ¥ cox
i i=1
where the sums are understood in the |||}, topology.

() @4 eB)W]=A40[1,8B)W],
OWAeB)=0[W(Q,eB),forall Ac %, Be % , and

We7,. If dim.J%", < «, then these relations hold also for all
A€\, Be7 , and We 4 ,.

Proof: (a) follows from Theorem A.1. (b), (c) and (i)
follow from (A2). (d) and (e) follow from (c). (g) follows
from Theorem A.3 and (h) follows from (g).

Proof of (f): By Theorem A.3,
16P(9) — OP W), <P (@) — PW)||.. P(p) — P@)isaself-
adjoint operator of rank two whose nonzero eigenvalues are
easily calculated tobe ¢, , = + (1 — [(@,)|*)"">. Hence,

1P@) = PW)] = o] + |e:] =201 — KoY [)*<2V2
e — 1. O

Finally we state two properties of the partial trace
which apply only to tensor products of more than two Hil-
bert spaces. Let { %", :ieM } be a finite nonempty family of
Hilbert spaces. For %4 C BC M, Theorem A.1 establishes
the partial trace from 7 5: = 9(® , ;% ) t0 T,
:=9(®,.,.% ywhichwedenoteby @ (4,B); @ (4,4 )isde-
fined as the identity map on .7 ,. Since the Hilbert space
tensor product is not ordered, & (4,B) has all the properties
established above for @. In addition, we find the following.

Corollary A.5: (i) For £4ACBCCCM,
@ (4,800 (B,C) = O (4,C). (A3)

(ii) Let M = CUDUEUF be a partition of M into disjoint
nonempty subsets and set A: = CuUD, B: = EUFand
G: = DUE. Then

OGM)XeY)=[@DM)XeY)]
e [P(EM)XeY)]
=[0DA4)X]e[O(,B)Y],
for all Xe7 ,, Ye7 .

Proof: Both assertions are easily derived from (A2). [J
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Birman-Schwinger bounds for the Laplacian with point interactions
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Birman-Schwinger bounds on the eigenvalues of — A are described, where — A is the self adjoint
operator obtained from the three-dimensional Laplacian by imposing boundary conditions at N

distinct points in R®.

1. INTRODUCTION
Let — A be the self-adjoint operator acting in L (R *)
obtained by imposing boundary conditions on the three-di-
mensional Laplacian at distinct fixed points x, ,x,,....x y€R 3
1im(-‘9— r - ar,)W =0, i=12N, r=|x—x,]
ri0 ¥ .
(1.1)

As is well known, the resolvent kernel for this operator can
be expressed,

_ 1 exp(—k |x—y|) 1
‘A kz 1 , — p—
N exp(-k|x~x,~|)T__(k)exp(~kty— i)
v |x = x| ' =l (1.2)

where T (k) is the matrix inverse of 4 (k) defined by
1 exp(—k |x;—x;]) .
Afk)y= — | l , A
47T [x,—xj| (13)

1 .
= — —(k+a), =]
4

The operator — A provides a very simple model for scatter-
ing; in terms of the matrix 7, the scattering amplitude for
— A is given by

—_ N
f(koul’kin) = _!'2 exp( - ikout"xi)]wlj( - lk )
4 ij

X exp(tki,x;), (1.4)
where &, .k, are the incoming and outgoing momenta.
Two-body potential scattering with suitably scaled negative
potential supported about x, ,x, ,...,xy has a scattering am-
plitude asymptotic to (1.4) at low energy. For a discussion of
the operator — 4 with a single “pin” (along with a discus-
sion of a related three-body operator) see the survey article of
Flamand.'

The purpose of this note is to provide Birman-
Schwinger bounds?” on the eigenvalues of — A4 (see Theo-
rem 1). Estimate (2.1) of the theorem has the following sta-
tistical mechanical interpretation: If N non-self-interacting
fermions are attracted to the NV pins via the boundary condi-
tions (1.1), their resulting energy exceeds a negative constant
times N plus another negative constant — ¢ times the sum of
the inverse square of the distances between pins. Thus if a

“Partially supported by NSF MCS 74-07313-A03.
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potential between pins is added which is at least as repulsive
asclx, —x;| ~ ?, thermodynamic stability is attained in the
sense that the resulting Hamiltonian H, for the N fermions
and pins satisfies H, > — const N with the constant inde-
pendent of NV and the pin configuration (cf. Ref. 4).

The derivation of inequality (2.1) is reminicent of that
for the potential case; we first obtain a bound on the number
of eigenvalues less than a given energy, inequality (2.2). We
remark that this bound is not particularly applicable if, for
example, the pins are placed in a rectangular lattice of fixed
lattice spacing and we take N— oo ; rather, the bound is more
applicable in the “‘collapsed” situation, where more and
more pins are added to a given fixed finite region R *.

. BIRMAN-SCHWINGER BOUNDS

Let N (k), k>0, be the number of eigenvalues of — A4,
including multiplicities, which are less than or equal to
—k? Letk,,k,,....ky , be the positive numbers defined
as follows: Set

N L\1/2
kNil:sup(zix,»—-x/\ ‘) .

Toiv N

i
Assume, by relabeling the x;’s if necessary, that the supre-
munn is attained for i = N. Next, set

N 1 172
ky_,= sup ]( Z ;x,—xj\72> .

Loin N - =
Again by relabeling, assume that this supremum is attained
for i = N — 1. The remaining £,’s are defined by continuing
in this manner. Note that k3 + k3 4+ - + k% _,
= 3" |x,—x]| . Fornotational convenience, set k, =0,
ky = oo. Finally, letk =0if a0,k = —aifa <0.
Theorem 1: The eigenvalues {e; } of — A lessthan — k*

satisfy
S e Q2N = 1) +c§:1x,~—xj} -2 2.0

e, < K i<y
with ¢ independent of N,a. For k >k, N (k) satisfies the
inequality

Nk +0) <43 [exp( — 20k + 1) |x, — x, )]

[y
X (k2% — x; | + exp( — 2(k + ) |x, — x;|)
+(N_l)y k[71<k<k]y

I=12,..N. (22)

Remark: In the particular case @ = 0 (x = 0) the eigen-
values of — A are homogeneous functions of degree — 2 in
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the x;’s. For this case, with NV = 2, the only eigenvalue is
e= — 0.322|x, — x,| ~ . An estimate for the constant ¢
with @ = 0 based on the discussion below is about 2.35.

We begin the proof of the theorem by recalling that the
eigenfunctions of — A are of the form

Noexp(—k |x —x;|)

Vo )=

i
477','=1

[x — x|
with eigenvalue — k %; here ¢ = (g, ,...,¢ ) is a solution to
A (k )g = Owith k such that this equation has a homogeneous
solution. Thus, at least for k > 0, N (k ) is the number of values
k ">k, times multiplicities, for which the self-adjoint matrix
function 4 (k') has eigenvalue zero.

Rather than working with 4 (k) directly, we consider
the matrix function

B(k)=C (4 (k)+C)C 72, (2.3)

where C is a diagonal matrix with strictly positive entries ¢,
i = 1,2,...,V as yet unspecified. Note that 4 (k ) has eigenva-
lue zero if and only if B (k ) has eigenvalue one. Further, the
multiplicities are the same (the respective eigenvectors are
related by g—C '“?q). Consequently ¥ (k ) is the number of
values k '>k for which B (k') has eigenvalue one.

The derivative of B (k ) with respect to k can be written

iB,-j(k) = —(¢) exp(—k|x;—x)|) (¢) '

dk
2.4)

which is a negative definite matrix. It follows from first order
perturbationtheorythatifA (k )isaneigenvalueof B (k ),then
asafunction of k it is strictly decreasingin . Since A (k ) goes
to — o0, k— 0, we have that N (k) is the number of eigenva-
lues of B (k ) greater than or equal to one. But this is estimated
by
N (k) <trB2(k ) — ﬁ': exp( — 2k [x; —x;|)
if
i

n i (k+a —c,-)Z’

i=1 C;

i

| X — x| %

(2.5)

Now if a is positive, we can replace ¢; by ¢; + « and use the
inequality (c; + @) ~'<(c;) ~'in (2.5). If @ is negative we
simply make the variable substitution £ ' = k + . In either
case we can write

Nk o< 3 SR 2 F 01X %))
i ¢l X — x;] %
i

Nk —c)\?
+,‘§1( C; )

1

(2.6)

Estimate (2.6) holds for arbitrary ¢,’s > 0 and by con-
tinuity holds for any of the ¢, ’s infinite; in particular they can
be taken as functions of k. We attempt to minimize the rhs by
differentiating with respect to the ¢;’s and setting the deriva-
tives to zero. This leads to the matrix equation with & > 0,

y-
cr‘+2L.,(k)c,~"=%, i=12...N'<N, (27
Jj
where
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exp( —2(k+ &) |x;—x;|)

k2 |x,— x|’ » 17
0, i=],
and where for later purposes, we consider the equations
N'<N dimensional.

Lemma 1: Equations (2.7) are solvable with ¢,’s >0
provided

Lk)= (2.8)

N’
sup Y Li(k)<1.
=2
In this case, each c, (k) satisfies
c(k)/k>sup{1,L(k)}, i,jel,2,..N".

Proof of Lemma: Equation (2.7) can be written
(1 + L)y = y ° with y °,y the vectors with entries y{ = 1/k,
x:=c¢; . The hypothesis of the lemma says that the Shur—
Holmgren norm of the self-adjoint matrix L is < 1 sothat the
operator norm of L is also < 1. The hypothesis also implies
that (1 — L )y ° has positive entries. Thus y is given by the
convergent Neumann expansion y = (1 + L? 4+ L* + -)
X (1 — L )y ° which has strictly positive entries and soc; >0
for each i. Finally, we have

(2.9)

N
)(? =X+ ZLUX,‘>LU'X,'
J

and y? — y,>0 by the matrix equation which combine to
give 2.9). I}

Returning to the proof of the theorem we define the
c;(k)sasfollows: For k, <k<k,l=1.2,.,N set
;i 1tk)=c¢ (k)= =cy(k)= 0 and let
¢,(k ),~,c,(k) be the solution to Eq. (2.7) with N' = /. The
solution is assured by the lemma and the definition of the
k,’s. Substituting these values for the ¢/s into the estimate
(2.6) and using the inequality

k 2L k)
o O T

which follows readily from the estimate (2.9) of the lemma,
we obtain

(2.10)

1 kL (k
N4y L) vy
ij Cf )
L Lyk)
QY ———— +(N=1), k,_,<k<k
%, 1+ LK) I~ i
2.1
which is estimate (2.2) of the theorem.
From estimate (2.11) we have
Z le)] = — f k2dN (k)
e, < —k, K+ 0
=k’NK+0)+2 kN (k)dk
k=+0
N =k + )Lk
<KV — 1).,.42{ (—Mdk
7o 1+ Lyfk)

N—1 K,
+22(N—1)L k+0)dk,  (.12)

I=1
where we have estimated the sum on the rhs of (2.11) by a
sumup to V.
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A typical term from the middle sum on the rhs of (2.12) can be estimated
= (k +&)L;(k) _ 1 = (p+x|x.—x;|)exp(—2p —x|x; —x;|)
o 1+ Lk) |x, —x;* o PP +exp(—2p—2|x, —x;|)

1 “ pe”*dp * dp
< I (f 2 —2p +K|x, -xJ|J‘ 2 _ _ )
|x; —x;|* \Jo p*+e o p’+exp(—2|x, —x|)

1 . ~d )
< P (J; £2e+e,[z),, + /2| x; — x; |exp( — K |x;, — x; |)) <const|x; —x;| % (2.13)
‘ g

dp

Here we have made the substitution p = k |x; — x;| and used the facts that the function (1 + ©) ~ ! is increasing, ¥ >0, and
uye ~ *“is bounded, u>0.
It remains to estimate the last sum in (2.12). We have

N1 K, N—1 N—1 N—1 N
2Z(N—1)f k+wydk= Y ki+2% Y k<2 Y ki+(N—1D=23 |[x;— x| >+£N—1) (2.14)
=1 ko =1 =1 I=1 i<j

since 2«k,<«* + k ;. Combining (2.13), (2.14), with (2.12), we obtain (2.1), which completes the proof of the theorem.
We conclude with some remarks concerning the case when the boundary condition parameter ¢ is pin dependent, i.e.,

lim (—‘?— r—a, r,.)wzo, i=12,..N. 2.15)

r10 ri

In thissituation [cf. Eq. (1.3)] the diagonal elements of 4 (kK )are4,; (k) = — (1/4w)(k + a;) and the off-diagonal elements are
as before. The argument expressing N (k) as the number of eigenvalues of B (k) greater than one still holds. To indicate the
dependence of N (k) on the a;’s we write N (k,@, ,a;,....,ay) and set N, (k) = N (k,a,a,...,a).

Lemma 2: N (k,a, ,a,,...,ay) is monotone decreasing in each of the a;’s. If a = infa;, B = supa,, then

N (K)>N (ka,ay,....ay ) >Ng(k). (2.16)

Proof: By first order perturbation theory, the eigenvalues of B (k) are decreasing functions of the a;’s. ||}
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On rotating plane-fronted waves and their Poincare-

invariant differential geometry
H. Urbantke

Institur fiir Theoretische Physik, Universitat Wien, Austria
(Received 9 October 1978)

After reviewing the rotating plane-fronted wave type solutions of the scalar wave equation and Maxwell’s
vacuum equations in flat space (we point out that there are Yang-Mill analogs as well), we study their
Poincaré-invariant geometry by discussing their characteristic differential invariants and a noninertial
curvilinear coordinate system canonically associated with them. In one of the appendices we treat the
shearfree and the nondiverging null hypersurfaces in complex Minkowski space, in another one we derive
the Yang-Mills version of Robinson’s theorem on null electromagnetic fields.

1. INTRODUCTION

Rotating plane and plane-fronted waves as solutions to
the scalar wave equation and to Maxwell’s and Einstein’s
vacuum equations have been discussed in the literature. For
the former, we may in particular refer to Ref. 1, where they
appear under the title “functionally invariant” solutions. We
review them here (Sec. 2A) together with a derivation in
Appendix A which we also extend to the complex case. For
the latter, we refer to Ref. 2, where a particular coordinate
system is used to simplify the field equations. One gets, in
fact, explicit solutions in terms of these coordinates which
are in complete analogy to the case of nonrotating plane-
fronted waves, and the whole gain in generality is hidden in
the metric coefficients or in the relations between these co-
ordinates and the Cartesian ones (Sec. 2B). It is easy to see
that these solutions have exact Yang—Mills analogs, an ob-
servation which parallels Coleman’s’ for the nonrotating sit-
uation (Sec. 2C). Some general features of Yang-Mills null
fields, in particular the analog of Robinson’s theorem,* are
given in Appendix B. Section 2D comments on the rotating
plane-fronted gravitational waves of Ref. 2 and mainly ex-
plains why the present flat space considerations of the fol-
lowing sections are irrelevant for this case. In Sec. 3 we treat
the differential invariants of a rotating one-parameter family
of null hyperplanes: In general, there is a distinguished pa-
rameter and two differential invariants which, when regard-
ed as functions of that parameter, describe the family in the
sense of “natural geometry.” The relation between the Lo-
rentz group and the Moebius group in two dimensions has
allowed us to borrow most of the development from existing
theory of conformal differential geometry of plane curves.’
In Sec. 4 we discuss the various envelopes which are associat-
ed with a rotating one-parameter family of null hyperplanes.
The above-mentioned coordinate system turns out to be inti-
mately related to these envelopes, which explains why it is
possible for it to be “‘canonical” without there being any a
priori symmetries in the arrangement of the hyperplanes.
This relation is obtained in Sec. 5, where we derive the rela-
tion between the canonical and Cartesian inertial
coordinates.

Notations:

Metric signature
ds’ =17, dx" dx",y,, = diag (1,1,1, — 1).
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Greek indices range and sum over 1,2,3,4.
€,..qp IS the permutation symbol, €,,,, = + 1.
Comma: partial derivative.
Electromagnetism: F, =4, , — A

F73% Vi FIne
—

Yang-Mills theory: 4, = (4 ) = (4 },,...,4 ), where

Latin indices range and sum over 1,...,» = dimension of
gauge group.

A X Bis defined by (4 X B )" = CA“B", where C¢,
are the structure constants of the gauge group. The field
tensor is then

Fo=A, —A4,.+4,x4

v it o 1

2. ROTATING PLANE-FRONTED WAVES
A. Scalar rotating plane waves

A scalar field @ in Minkowski space is called a plane
wave if the hypersurface @ = const. are lightlike, or null,
hyperplanes. This means that the family of hypersurfaces
@ (x#) = 7 must also be expressible in the form
k, (T)x" = p(r), where k, (1)k *(7)=0. If the direction of
k, (7) is constant, we have the usual plane waves with paral-
lel rays. Here we want to consider the rotating ray case where
k '(r)isnotproportionaltok (r)(' : = d /dr).Fromk * = Owe
have kk ' = 0, and thus in the rotating case k&’ is spacelike,
k'*>0.

Conversely, given p(7) and &k (r) with k 2 = 0, we can as-
sociate with the family of null hyperplanes & (7)x = p(7) a
scalar field @ (x), given by the implicit equation

k(P)x = p(D). @.1)
By implicit differentiation, we find
- _ R
W+ p/ _ k rx ’
" ” k ’d) ) k ’,¢
(p./n': - L ’ « x¢;l¢\'+ e h —
p—k'x * p —k'x 2.2)
” _ k ”
=+ p—,—x¢,u¢v - (ln(p’ —k ’x)) ;14) v
o —k'x * N7

—(In(p' — k X)), P,,.

Fromk’ =0, kk ' = 0O we see that @ satisfies the wave equa-
tion O = Q; its gradient field V@ is null, geodesic and di-
vergence-free, which (flat space!) also implies the absence of
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shear.® It is well-known that all null, geodesic, hypersurface-
orthogonal, shear and divergence-free vector fields can be
obtained this way. (For a method of showing this, cf. Appen-
dix A.)

Our scalar fields may also be characterized by another
property: They are what has been termed “‘functionally in-
variant” solutions of the wave equation. This means, if @ (x)
is a solution of (1 = 0 and F(.) is an arbitrary function of
one variable, then @,(x): = F (@ (x)) again satisfies the wave
equation. In fact, this condition is immediately seen to be
equivalent to 0@ = 0, (V@ )* = 0, whose simultaneous solu-
tions are—as we pointed out—given by (2.1), which in this
context has been called the “Smirnov-Sobolev formula.”
The following side remark may be interesting: Because of the
linearity of the wave equation, it makes sense also physically
to ask for complex-valued functionally invariant solutions.
In this case not all solutions are given by (a complex version
of) (2.1), except for space dimensions lower than 3, as found
by Erugin.” Because of the inaccessibility of this reference,
we rederive his results in Appendix A, following the geomet-
ric ideas of Friedlander,® thereby achieving considerable
simplification and unification.

B. Electromagnetic rotating plane-fronted waves

An electromagnetic field F,, (x) is called a null field if
its invariants Fm F*¥and F, *F""both vanish. One can de-
duce that F, isthenoftheformF, =a,k, —a, k, where
k?=0=qa,k". When the source-free Maxwell equations
hold, k must be geodesic and shearfree; conversely, for a
given null geodesic and shearfree k one can find @, such that

a,k"=0and F,, =a,k, —a,k, satisfies the source-free
Maxwel] equations (Robinson’s theorem, cf. Refs. 4 and 6).
When the vector field & is twistfree, i.e., hypersurface ortho-
gonal, one can take k, =« , and then find a gauge for the
vector potential so thatA =au,, where a is some function.
The field then becomes Fw =a,u, —a,u,. Fields of this
kind have a “functional invariance” property in the sense
that if F,,. satisfies Maxwell’s equations, then
F (1) with arbitrary F also satisfies them, and

=F
has this property, it must be of the

I,u\ IS

conversely, if some F,
above form.

We will now call a null field F,,, a plane-fronted wave, if
the ray vector field & is twist- and divergence-free, i.e.,
k = Vu, where (Vu)' =0 = ([ Ju. Thus k is the gradient of a
scalar plane wave, and the term “plane-fronted” is intro-
duced only because the amplitude a ,, may in general not be
constant over the wave surfaces. We shall be interested here

in the rotating ray case. Maxwell’s equations F,,'* = O then
become
2au,, +u, =0, (2.3)

using (u = 0, VuVa = 0. According to Ref. 2, this may be
simplified further by observing that « ,, has the form [cf.

(2.2)]

u £ = ﬁu‘iuu'v + 7’#”‘\1 + 7/,\'u,/l' (24)

Here y is determined only up to addition of an arbitrary
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function of u, with a corresponding change in /3, and may be

checked to satisfy

=y, 4y, =0

The conditions to be satisfied by a may then be written
VuVa=0, Llera)=0 (2.6)

Explicit solutions for ¢ may then be obtained using a
curvilinear noninertial system of coordinates u,v,£,7 which
is particularly adapted to the rotating ray system and in
which the Minkowski line element takes the following form,

Y, =0, (2.5)

= dE? + dn — f‘féidgdu + 2du dv

+ <§ -+ &4 (u,g, n))du , 27N
where A: = h (u) + j(u)& + in) + 7 (u)(& — in) with some
real function 4 and some complex function j of u. These
functions characterize the particular rotating ray system un-
der consideration, as will be discussed in the subsequent sec-
tions. The existence of this coordinate system can be de-
duced from Kundt’s canonical form of the rotating plane-
fronted gravitational waves? upon recognition’ of their
Kerr—Schild form. The relation to Cartesian inertial coordi-
nates will be given later; for the moment it may suffice to
state that the flatness of the metric ds? can be checked by
calculating its Riemann tensor and that the properties
(Vu))=0= [_Ju can be checked directly in terms of the new
coordinates. The inverse metric is

)
i I (92 az
<6s +

where symmetrized tensor products are understood, as in
ds’. Using the appropriate Christoffel symbols, we find
u,, = —u u,

e Nt (ln ),/l RO (ln§ ),vu,,u’
& D

so that p’ — k 'x [cf. (2.2)], ¢ 7, and £ may differ from each
other only by u-dependent factors. Equations (2.6) now be-
come in the new coordinates

8a

9,09, +23,0, + (§A — g—)af, 2.8)

2.9)

=0, (di+3)a=0 (2.10)
N . ’
so that
a = ReF (u,§ + in), (2.11)
where . is analytic in the complex variable § + i77.

In the nonrotating case (., =0) the same formula for
a holds with &,7 replaced by the original Cartesian inertial
coordinates. Thus the gain in richness of the solutions con-
sidered here is hidden in the functions j(u), # () that appear
in (2.7). In fact, the new coordinates are quite canonical in
the sense that (2.7) is form invariant only under

@ u=fu),

U= U_‘, + -[%5” (f monotonic, three times
differentiable),
h—h(u,)=h (f @))f " (u), (2.12)
J=iuy) = @) *(w) + 1 (f (),
H. Urbantke 1852



where
rer=L12 - ALY

is “Schwarz’ derivative,” to be discussed later (Sec. 3);

(2.13)

(b) m=m,+c¢ (c a real constant),
h—h (1) = h (1) — cImj(u).

We see that under (a) # (#) du? and Imj(u)du? are invariant
differential forms, and therefore A /Iy is invariant under
(a), but changed by a constant under (b). We must now dis-
tinguish two cases:

1. Imj(1)zZ0. Here

e:=sgn Imj(u) = + 1

(2.14)

is an invariant, and

o(u): = fllmj(u)[‘”du = Jllmjl(u.)l”zdul 2.15)

is an invariant coordinate, i.e., a distinguished choice for u.
From the formal properties of 7 ( f(-)), to be listed in Sec. 3,
we also find that

Rej(u) — I (a(w))

€Rej(0) = (2.16)
) Imj)
is an invariant. Finally, by our remarks above,
B RV C) ML C/ U R
do Iny du Imj(u) do

is an invariant.

I1. Imj(z)=0. In this case, 4 (1) is not affected by (b),
and by (a) we can reach Rej(1)=0, i.e., j(u)=0, which deter-
mines the coordinate u up to “projective” transformations
u—{(au + B)/(yu + 6) with real a,53,7,5 satisfying
ab — By+#0[seeSec. 3 for the relevant properties of I ( £(-))].
Under these transformations 4 (&) remains a “relative” in-
variant, so that 4 (#)=0 represents an invariant subcase.

Thus, in order to understand our solutions, it will be
important to understand these invariants and the canonical
coordinates geometrically. In particular, one has to realize
that these coordinates will be valid only in a part of Min-
kowski space, and will eventually develop singularities. This
is connected to the existence of various kinds of envelopes
associated with the rotating ray system. We will discuss
these topics in the subsequent sections.

C. Yang-Mills fields

Coleman® has pointed out the existence of (nonrotating)
plane wave solutions in non-Abelian gange theory. Here we
proceed to construct rotating plane-fronted Yang-Mills
(YM) waves.

_. Anull YM field ii“, is defined to be of the form
F,=dk, —ak,k?=0=a:k" Weshow in Appendix
B that Robinson’s theorem holds in the non-Abelian case.
We also show there that if &, is twistfree and thus can be
taken as a gradient u , then there is a gauge where the poten-
tials are of the form 4, = au ,, where (Vu)* = 0. In this
gauge the nonlinear terms in the expression of the field in
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terms of the potential drop out: 4 u XA » = 0, due to the anti-
symmetry of the structure constants. Thus we may take

d, =d, and must have Vd.Vu = 0. It follows that the non-
linear terms in the YM field equations also vanish:

A "X F,, =0.This means that we can copy everything about
rotating plane-fronted electromagnetic waves from Sec. 2B,

putting arrows over the a.

D. Remark on gravitational waves

Rotating plane-fronted gravitational waves were given
by Kundt.? They are of the same form as in (2.7), but
A (u,£,m) is now of the more general form Re.% (¢, + i),
where % is analytic in £ + in, but not linear. They can be
written in an infinity of ways in the “Kerr-Schild form”
ds* = ds} + Hdu’, i.e., as a perturbation of a flat background
dsj, which is given by (2.7)."° This is because we can split off
arbitrary portions linear in £ + in from H. Since basically
only the total metric ds® is essential, such a splitting could
only be useful physically if it were unique. Thus in general
relativity the invariants considered in Sec. 2B and to be con-
sidered later lose their significance.

We also remark here that, because of the form (B8) of
the energy-momentum tensor, it is easy to construct com-
bined gravitational and Yang-Mills rotating plane fronted
waves, using Kundt’s formulas. But we stress that we want
to consider only flat space in this article and therefore want
to leave out gravitation further on.

3. DIFFERENTIAL INVARIANTS OF THE RAY SYSTEM

For fixed u = const, the rays generate the null hyper-
plane & (r)x = p(7). In writing this equation, we introduce a
twofold redundancy, as we can reparametrize 7 by letting
7 = f(r)) and we canrecalibrate k by letting k = 1k,,p = Ap,
(a null vector has no preferred Lorentz invariant normaliza-
tion). We now study the question whether it is possible to
find quantities which are Poincaré invariant as well as invar-
iant under reparametrization and recalibration and which
characterize our one-parameter family of null hyperplanes
k (r)x = p(7). Note that p has a nontrivial translational be-
havior. For visualization we imagine some arbitrary inertial
observer who observes the three-dimensional ray direction
as a point (“searchlight spot™) on his “celestial” sphere. This
point will then trace a curve on the sphere which we may also
study via its stereographic projection. It is well known that a
Lorentz transformed observer will see a conformally trans-
formed curved (on his sphere as well as on the stereographic
plane); the conformal transformation sends circles into cir-
cles." We shall now find a conformally invariant parameter
on this curve and a conformally invariant kind of “curva-
ture” that will characterize the curve up to conformal trans-
formations, in the sense of “natural geometry.” Finally we
will find an invariant characterizing the kinematical aspects
of how the point traces over the sphere.

A. The Pick-Liebmann parameters

Consideracurveof null directions: k = k (7),k *(r) = 0,
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where (dk /d7y > 0; then (' : = d /d7)

€,k kK meg w3 |12
O'ZJ( ~ o A ‘d| T 3.1

2

is a natural parameter for the curve (in the general case; we
shall see the significance of do/d7=0 in a moment), in the
sense that it is

(1) manifestly Lorentz invariant
(2) invariant against recalibration k, (T)—s(T)k (7)
(3) invariant against reparametrization 7—£ (7).

When we introduce the complex coordinate ¥ (7) for the
representative point of the null direction in the stereographic
plane of an inertial observer as

V= Ei'_ky

k,+k,
then under Lorentz transformations, Y—(a Y + )/

(yY + 6) with complex constants a,...,8 satisfying
ad — By+#0.

An important quantity in the sequel will be *“Schwarz’
derivative”

(3.2)

Y"’ 3 Y” 2— AN/ IAY
(Y (n): = S —2—(7—) =(nY")" — i(InY")?

I

-2V 7(—1—) (3.3)

(Y')I/Z
Some easily verified properties of it are:
(1) It is invariant under Y—(aY + 3)/(yY + 6).

(2") Under reparametrization 7, = 7,(7), Y (1) = Y\(r),
it behaves as

(Y () = I(Y(r)ri* 4 1 (7(7)) (3.4)

@Y (Y (7)) = 0iff Y (r) = (a7 + B)/(yr + 8)forsome
complex constants a,...,d satisfying aé — Sy=40.

(1) and (2') imply that §|Im/7 (Y (7))|"*dr has the same
invariances as the parameter ¢ above; in fact, from the ste-
reographic formulas

k,=V2ReY, k,=V2ImY,

— 1— |Y‘2 k = _1_.+_u:t. 3.5
() ! () ’ (3-5)

one may verify by straightforward calculation that
€vapk 'k Tk k" '’
(k")
If this is not equal to 0, its sign € is also invariant. If it is equal
to 0, we see that by (3.4) we can reach Rel (Y,(r,))=0by a
suitable choice of 7, and then from property (3") of I (Y (7))
that we can find an observer for whom Y (7)=r: the stereo-
graphic point traces the real axis, the celestial point traces a
great circle, and thus traces some circle for any other observ-
er as well. Hence o may be used as a parameter for noncircu-
lar curves. (There is no invariant parameter in the circular
case, because the Lorentz group acts multiply transitively on
circles.)

z

= Im/ (Y (7). (3.6)
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B. The Thomsen-Takasu invariants

In the noncircular case one can find a curvaturelike
invariant, using the preferred parameter 0. When Y is re-
ferredtoo, wehaveImY (0) = .« = + 1 and see at once that
Rel (Y (0)) is an invariant. In terms of the arbitrary param-
eter 7, this equals

Rel (Y (7)) — I (o(7))

Im/ (Y (7))

and is therefore of the fifth differential order. Specifying it as
a function of o will fix the curve on the celestial sphere up to
changes of inertial observer. For instance, it is a constant iff
the curve is a (generalized) loxodrome, i.e., an isogonal tra-
jectory of a family of circles that have two points in common
(the stereographic image is conformally related to a logarith-
mic spiral). In this case, its value is related to the angle of
intersection.

(3.7)

To express this invariant in a manifestly Lorentz covar-
iant form, k (7) is equipped with a preferred calibration;
namely, one defines

Y N A
k" (k 212 ’

which is independent of the original calibration and parame-

trization of k. When referred to o, we have v = 1, and 0" is

the lowest order differential invariant one can form. Again a
tedious but straightforward verification shows that

K: = v"? = 2Rel (Y (0)). (3.9)

All other differential invariants depend functionally on
K and its derivatives. This is because € = det(vv'v"v"")
= + 1=£0says that v, v, v”, v”’ form a basis, and all scalar
products between them follow once K is known (cf. Table
C5) in Appendix C)—hence all expansion coefficients of
higher derivatives v “,--- may be calculated in terms of K. We
shall need the result

U“’(U) —_ (1 _ %K ”)U _ -;—K rU: _ KU”.

o(r): = (3.8)

(3.10)

In Appendix C we show that K is indeed minus the invariant
defined by Thomsen, who gives a geometric interpretation in
terms of certain circles associated with the curve and angles
between them.

C. The kinematical invariant

We now want to extract from the function p(r) an invar-
iant that characterizes the temporal behavior of the rays. We
can use our preferred parameter o and preferred calibration:
k = v(0), i.e., put p = p(o). Since p is a Lorentz scalar, we
have only to overcome the difficulty of its nontrivial transla-
tional behavior: p—p + ka under x—x + a. However, thisis
easy with the help of (3.10): Multiplying it with a, we see that
ka is annihilated by the invariant linear operator

R 3., d d? d’

(ZK D+ X do +Kd02 do*’
which therefore, when applied to p, produces the desired
invariant,

P+ Kp" + 3K 'P + GK" — Dp
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= i(p"' +Kp' +-K'p— J-pa'a).
do 2

An interpretation of it will be given in the next section. In the
circular case, where we canot use g, we have a linear depen-
dence among k, k', k", k "' which can replace (3.10). Using
the calibration (3.5) and a parametrization plus Lorentz
frame where Y (7)=r, this relation is simply k& "'=0.

(3.11)

4. ENVELOPES ASSOCIATED WITH A ONE-
PARAMETER FAMILY OF NULL HYPERSURFACES

In general, our family k (7)x = p(7) of null hyperplane
will have no simple symmetry properties. Nevertheless, the
canonical coordinates are remarkably well adapted to it.
This is because the ray system has certain singularities in the
form of enveloping curves, surfaces and a hypersurface, and
the coordinates are tied intimately to these objects. This will
be shown in the following section; here we just describe the
various envelopes.

Let k (7)x = p(r), where k () = 0, be the family to be
considered; if we assume k A k '520 (A indicates exterior
multiplication) as before, we have from kk " = Othat £ > 0,
i.e., k' is spacelike.

(a) Intersecting the hyperplane 7 with its neighbor
7 + 67 (57—0), we get a characteristic 2-plane within each
hyperplane, defined by the pair of equations

k (T)x = p(7),
(Note the assumption & A k '5£0.) Because of
(kANk'Y =k '* — (kk ') = 0, the characteristic 2-planes are
null (i.e., touch the light cone at each of their points). As 7
varies, they trace a hypersurface whose equation is obtained
by eliminating 7 between Eqgs. (4.1). For those points where
k "xs£p”, we may solve k 'x = p’ for r as 7 = ¢ (x); then on
our hypersurface F (x): = k (¢ (x))x — p(¢ (x)) = 0, hence
VF = k (¢ (x)),1.e., thehypersurface touches the hyperplanes
along the characteristic 2-planes, thus forming their envelop-
ing hypersurface and therefore being null. (It may be charac-
terized by the relation 62 = |o|? between its expansion and
shear.)

k'x=p' “.1)

[One could think of an exceptional case where the char-
acteristic 2-planes all coincide and do not trace a hypersur-
face. However, for this to happen one must have
(kNk'Y <kNk',whence kAK"Ak” =0; but
(kANk'Nk")? = — (k'?) <0. Thus the characteristic 2-
planes cannot even be parallel.]

(b) Intersecting the hyperplane 7 with two neighbors
gives, in the coincidence limit, a characteristic line within
each characteristic 2-plane, satisfying

k(1)x = p(7), (4.2)

Vectors along this line are orthogonal to &, k', k¥ ” and thus
parallelto/: = *k Ak’ Ak " (where * means dual). One cal-
culates /? = (k '?)’ > 0, thus these lines always exist and are

spacelike. On varying 7, these lines generate a 2-surface with
normal bivectors & (7(x)) A k '(7(x)) at points where

k "'x5p"’. Hence this 2-surface is null and is the envelope of

k'xzp', kux:pu‘
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the characteristic 2-planes, touching them along their char-
acteristic lines.

There may be an exceptional case where all characteris-
tic lines coincide and do not generate a surface. Necessary
for this is /'oc/ or (KkAK'Ak")Y <ckAKk'Ak”, which
generally characterizes parallel characteristic lines. This
condition is equivalent to Ak Ak Ak " Ak ""=0 and will be
treated later.

(c) Continuing, we get a characteristic point on each
characteristic line by the simultaneous solution of

k (r)x = p(7), (4.3)

Varying 7, this point will in general (k Ak'Ak” ANk "'5£0)
trace a curve x = x(7) which makes (4.3) into identities. Dif-
ferentiating these with respect to 7 and using them once
more, we find the conditionskx’ = 0,k 'x' =0,k "x’ = Oand
kx + k "'x" = p ™ for the tangent to this curve. From the
first three of them x' = A *k Ak ' Ak " = Al, which shows
that the curve touches the characteristic lines and is their
(spacelike) envelope. A may be calculated from the last con-
dition, since k& * may be expressed linearly in terms of
k,....,k "'. Using the invariant parameter o and the preferred
calibration introduced in Sec. 3, we get x'2 = 4%, and from
(3.10) that Ae = p™ + Kp" + %K P+ (%K " — 1)p, which is
just the kinematical invariant of Sec. 3C. Thus its integral is
nothing but the arc length on the envelope of the characteris-
tic lines. The invariants of this curve are expressible in terms
of K and A. In particular, our curve turns out to have vanish-
ing (first) curvature (i.e., null first normals) and character-
izes the whole family & (7)x = p(7) in the following sense:
Given a spacelike curve which is not contained in a hyper-
plane and has vanishing (first) curvature, its tangents sweep
over a null 2-surface. The tangent planes of the latter sweep
over a null hypersurface whose tangent hyperplanes form a
one-parameter family of null hyperplanes.

klx :p,, k Hx =p”’ k/lrx :pnl.

We now turn to the exceptional cases. One of them oc-
curs when the characteristic point does not trace a curve, but
remains fixed, x'(7)=0. Then A = 0, i.e., the kinematic in-
variant vanishes. All hyperplanes of the family pass through
this point, and shifting it to the origin makes p(r)=0. We
may refer to this case as the ““conical case.”

The other exceptional cases arise when the characteris-
tic points do not exist or remain undetermined on the char-
acteristiclines. Theconditionforthisisk Ak’ Ak " ANk "' =0,
orequivalently,det(kk 'k "k "") = O,i.e.,k "’depends linearly
onk, k', k ".Inthiscase we havealready seen that the charac-
teristic lines are parallel, or coincide if there is the same rela-
tion among p(7),...,p" () as is among k (7),....k "'(7) [so that
by a translation we can reach p(7)=0]. Since we know that
there exist inertial observers for which the spatial part & (7)
traces a great circle on their celestial spheres, this case may
be called “cylindrical,” or “axial” in the subcase.

It should be remarked that our analysis is nothing but
the standard treatment of the envelopes associated with a
one-parameter family of planes in Euclidean R 3, adapted to
four-dimensional Minkowski spacetime and the possibility
of null hyperplanes, null 2-planes,...,therein.
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5. RELATION BETWEEN CANONICAL AND INERTIAL
COORDINATES

We now want to establish the relation between the ca-
nonical coordinates (2.7) and Cartesian inertial coordinates.
In principle, there is a systematic procedure for this: If ds* is
flat as checked by calculating its Riemann tensor, one can
use the fact that the gradient of a Cartesian inertial coordi-
nate is a geodetically parallel vector field. Thus one can par-
allelly transport some vierbein from a given point to all oth-
ers, no matter along what curve, to obtain four independent
gradient fields, whose “potentials” are Cartesian inertial co-
ordinates. Using a spinor dyad and the associated null tet-
rad, this procedure can be reduced to the solution of one
single (complex) Riccati equation and some quadratures. '
In the present case this Riccati equation cannot be solved
explicitly, except for some very special choices of j(u), & ().
However, it is possible to find an expression of the canonical
coordinates in terms of Cartesian ones which is explicit, ex-
cept for the fact that u(x) has to be imagined as being a
solution 7 = u(x) of k (7)x = p(7). This is achieved using the
fact that there is also a systematic procedure for constructing
the canonical coordinates. The most elegant version of it
uses Cartan’s structure equations of flat space in terms of
null tetrads together with some modest amount of exterior
form technology and will be presented first. (We are special-
izing from unpublished work of Plebanski.)

A. Construction of the canonical coordinates

We choose a null cotetrad, i.e., four one-forms ¢', €2, ¢°,
¢* such that the metric becomes
ds® = 2(e'e* + e'¢*), ¢’ real, ¢ =& ™ complex,

(5.1)

and orient it such that ¢’ is along the ray direction &, dx*. The
freedom left consists of boosts along k, together with rota-
tions around it, which may be written

e = %!, e’ =e e, e =e¥d, ¥ =¢ &,
(5.2)
and of ‘“‘null rotations”
e =e' + C¥e, e =€+ (e, &' =¢,
e’ =e' — Ce' — C¥e? — CC*e. (5.3)

Using the notation of Ref. 12, the Cartan structure equations
of Minkowski space may be written

de' = —e' AT, — e NT'¥, —e' ATy, (5.4a)
de’= + &AMy, — e ANy — e ATE, (5.4b)
de*=e NI + e Ay — & ATy, (5.4¢)
det =e' Al + e ANCH + et Ny, (5.4d)
dlr, + To N+ 1) =0, (5.52)
d(,+ T+ 2N AT, =0 and cec. (5.5b)
diry+ o+ DA =0, (5.5¢)

where I, are the connection forms: I', is real, Iy, is pure
imaginary, [, and ', are complex. Under (5.2) they trans-
form as
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r‘;Z:emﬁLi(b[‘fw’ r;z+r§4:r12+r34+d(w+lh¢),
Liy=e @29, (5.6)

while under (5.3) they undergo
1“;2:]““, r;2+ré4=r12+r34+zcrm
r;l :rll+C(r12+r34)+czr4z+dc.

The fact that the ray system considered here should be geo-
desic, twist- shear-, and divergence-free but rotating may be
expressed'’ as

(5.7)

Iy =1ge, y50. (5.8)
From (5.5a) we have I',, Adl,, = 0, implying the existence
of two complex functions 4 and B such that I",, = — 4dB.

By (5.8) I' & is proportional to I, hence there is a complex
function K such that dB* = KdB = KK *dB *, i.e., areal ¢
such that dB * = ¢*YdB, where dyy AdB = 0. Therefore,

edB = e~ 'dB * is real and closed, so locally there is a real

function r with dr = ¢ YdB. From I',, = — Ae ~ Ydr we can
reach by (5.2),
r,= —dr, ecxdr (5.9)

In the new frame dI” ;, = 0, thus (5.5a) gives
Iy, + Iy« };,andby(5.3)wecanreach I {, + I {, =0,
e, ', =0, I',,=0.(5.5b)nowgives ", AL, =0,i.e.,

Iy, = — % jdr with some function j, for which we deduce
from (5.5¢) 0 =dI'{, = — idjAdr,ie.,j=j(r). By
Y= —drdl,=0=r1%, I'{i=—3%jrdr
(5.10)

we have now satisfied (5.5), obtaining simple expressions for
the I'’s.

Inserting (5.10) into (5.4), we obtain (observe e*” « dr)

de'" = e*" Ndr=de*” and c.c., (5.11a,b)
de’" = — (e + ") Adr, (5.11¢)
det” = — 3(je'" + j*e) Ndr. (5.11d)

At this point the following easily proved lemma is useful:

Lemma: If r is a function and « is a one-form, then
da Adr = 0 is necessary and (locally) sufficient for a to be
expressible as @ = da + bdr for some functions a, b. Apply-
ing this to e'”, €*”, e'”, we may write

e =df + (w+f*dr and cc, e =dw —A4dr,

where £, fare complex, w and A4 real. Inserting this back into
(5.11), we get from (5.11c¢), putting &’” = gdr

0 =de” + (dE +dE¥)Ndr=d (¢ + (& + £5)dr),

ie., (g + & + £ ™)dris (locally) a perfect differential dF (r),
where Fis real. Introducing §,: = § — 1F’, we get

g= — (& +¢Y), thus
e’ = — (& + &,
e =dt + GF" +w+fHdr=d, + (w+ f)dr,

where f, = f+ LF". Now (5.11¢) is satisfied, and we turn to
(5.11a) which gives

(dw + df Yy Adr =dwdr, ie.,f =)
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We can write
e = df, + (w + Refy — ilmf)dr

=d(, — iflmﬁdr) + (w + Ref))dr

=df, + wudr,
e = — (&, +ENdr, e =dw, — A.dr,
where
=&, —ilmfidr, w,:=w+ Ref;, 14.::=4+ Ref|,

and have now satisfied (5.11a,b). Finally, (5.11d) requires
0= (—dA, +j(rds, +j " (nds ) Adr
=d (— A4, +j(N5: + (5T Nar,

which means that the last bracket equals some function
— 14 (#) of . This determines the form of 4;, and (5.11d) is
now satisfied.

Omitting the indices 2, we conclude that we have rotat-

ed the original cotetrad {e',---} to a new one {e'” -} such
that there are functions r, w, § in terms of which

e =dl +wdr, & =dt* + wdr,

e = — (&4 &Hdr, (5.12)

" =dw—Y4dr, A:=h() + )¢ +jFEEF.

Calculating

" Net" Ne" Net” = — (& + EMdENDEF Ndr Ndw, we
find that », w, Rel, Im{ may be used locally as coordinates
where & + £ *540. If we finally write

g btmo v Y (5.13)
(2)1/2 (2)1/2 §

ds® = 2(e'"e?" + e'"e*") goes overinto (2.7). We shall use the

coordinates &, w, r in the following, however.

B. Relation to Cartesian inertial coordinates

After having seen how to construct canonical coordi-
nates “‘out of thin air,” i.e., out of any given null cotetrad
with e’ « k dx*, we can establish the relation to inertial co-
ordinates by making a suitable choice for the original {e %] in
terms of inertial coordinates. Following Ref. 12, we write the
ray vectors k as in (3.5), and introduce Cartesian null
coordinates.

_x+iy’ Zz* U= z+t, =z—t.
(2)1/2 (2)1/2 (2)1/2
(5.14)
Then
kdxt' =dU — |Y |%dV + Y*dZ + YdZ * (5.15)
and

ds* =dx* + dy* + dz* — dt *=2(dZdZ* + dUdV)
=2((dZ — YdV)dZ* — Y*dV)+dV(dU

— |Y|dV + Y*dZ + YdZ*)). (5.16)

Thus we may take as the initial cotetrad

e'=dZ — YdV, & =kdx, e =dV.
(5.17)

e =c.c.,
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One finds for the connection forms (cf. Ref. 12)
ry,=-4dy, r,+r,=0, r;,,=0. (5.18)

Our rotating family of null hyperplanes k (r)x = p(7)is given
by specifying p(7) and Y (7). If 7 is used as coordinate,

7 = 7(x) has to be taken from this implicit equation. Thus
Y=7Y'dr,and ', = — Y 'dr may be transformed into "},
= —drby(5.2)and (5.6) withw + i¢ = — InY’, sothat we
may take r = 7(x), as expected. We shall write

Y'=Re ™, R>0, o real (5.19)
In the new cotetrad, I {, + "}, = — (InY'Ydr,I";, =0,

and we remove I" |, + I" ;, by (5.3) and (5.7) with
C= —1Y"/Y’. This gives

e =ee' — 1re 6—3, e = e—B,
2 Y* R R
(5.20)
" — Re* 4+ - LY” ., - 1 Ho o it _ I‘Y" 2e3’
2 Y 2 Y*’
and the connection forms
ryy=—dr, I'+I35,=0, T = —4(Y(n))dr,
(5.21)

where again Schwarz’ derivative appears. Now we can read
off the function j and see immediately that one of the invar-
iants encountered in Sec. 2B agrees with the Thomsen-Ta-
kasu invariant of Sec. 3. To see the agreement between the

other ones, we must fullow through identification of the co-
ordinates, comparing (5.20) with (5.12). From

— (¢ + ¢™)dr =" = kdx/R we read off, using kx = p,
kdx = (p' — k'x)dr
pl _ k /x " p,
+¢F= - ¥——— =(Z - YV)+4coco —
§+¢ R ( ) 2
(5.22)

1" 2/1

Next observe that e
d—35&*),
et — e =edZ — YdV) — c.c.

should be a perfect differential

— i:p'(E — 2Ree (Z — YV))dT

-fegel

where we have expressed Y ”/Y " in terms of (5.19). Thus

=d[e“”(Z——YV)—cc

—elz—yvy— £ _ L[¥P, 5.23
¢ ( ) R > R (5.23)
up to an imaginary constant of integration.
We now calculate w = (e!” — d¢ )/dr to find
IR r P” R ’ 3
w=RV—82 4 £ B Re[e¥Z_ YV
e T o T g Rele™ )]
+ ¢'Im[e™(Z — YV)]
pll — k le R ’ , ,
= _(p— k). 5.24
= e — k%) (5.24)

This already ends the determination of the coordinate trans-
form, and the comparison of both expressions for e*” only
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serves to express / (7) in terms of k, i.e., of Y. After some
calculation, expressing everything in terms of R, ¢, one finds

o rGE)) ) e

To see that this leads indeed to the kinematical invariant
(3.11), we assume that 7 has been chosen to be the distin-
guished parameter ¢ (in the noncircular case). In terms of R,
¥, this means

RE = R(E) =i (@) == 1,
(5.26)
while the Thomsen—-Takasu invariant is
R 3J/R"\2
K = 2Rel (Y (0 :2(_ _ _(_.))
(Y (o) R A=) )T 4

When we observe that pin (3.11) corresponds to k calibrated
such that & '* = 1 we see that we have to replace p with Rp in
(5.25) before comparing with (3.11). Now a partial integra-
tion and the use of (5.26) at several places leads, after some
algebra, to the coincidence of (5.25) with the bracketed ex-
pression in (3.11). [In the circular case we can take Y (r)=r,
=0, which makes & ' = 0, corresponding to # = p"".]

We can now discuss the significance of the canonical
coordinates. By construction, 7 = r describes the various
nuil hyperplanes Ax = p. Re{ = 0 gives their envelope,
whereas r = const, Re{ = const are 2-planes parallel to the
characteristic 2-plane within each null hyperplane. [An-
other interpretation of Re( follows from (5.8) which gives
I}, = (2Re& ), since in Ref. 6 it is shown generally that
|I.5| is the angular velocity of the spatial ray direction with
respect to a geodesic observer; this can, of course, be checked
directly for our ray system.] w = const cuts out from each of
these parallel planes of family of lines parallel to the charac-
teristic line. Im{ is the arc length on each of them. These
results follow from (4.1), (4.2), (5.23), (5.24), and (2.7). It is
therfore geometrically clear that such a coordinate system
must have singularities.

APPENDIX A: SHEARFREE AND NONDIVERGING NULL
HYPERSURFACES IN COMPLEX MINKOWSKI SPACE,
AND COMPLEX FUNCTIONALLY INVARIANT SCALAR
WAVES

Erugin’ has obtained the complex functionally invar-
iant solutions of the scalar wave equation and has, in particu-
lar, pointed out the existence of solutions not given by the
complex version (2.1). We rederive his results here by a geo-
metric method borrowed from Ref. 8, thereby achieving
considerable simplification, avoiding to discriminate be-
tween several cases. Since this method continues to consider
@ (x) = c as the equation of a hypersurface even for complex-
valued @, we must assume @ (x) to permit a differentiable
extension to complexified space—time, i.e., we must restrict
ourselves to analytic solutions. (It seems to us that Erugin
has made this assumption somewhere in his paper as well
without mentioning it.)
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To study the simultaneous solutions of (V& )* = 0,
[le = 0, we consider the two-dimensional wave surfaces
cut out from @ = const by hypersurfaces ¢ = const (¢.-- iner-
tial time in the real case, nonnull Cartesian coordinate in the
complex case) which carry ordinary Euclidean geometry. It
is known (although we are aware only of Refs. 10and 13 and
three-dimensional expressions in Refs. 14 and 15 from which
it is easily deduced), that vanishing shear for the hypersur-
faces @ = ¢ means H * = K, and vanishing divergence means
H?*= K =0, where H and K are the mean and Gaussian
curvature, resp., of the two-dimensional wave surfaces.
Standard texts on surfaces in rea/ Euclidean space now in-
form us that A ? = K=£0 implies that the wave surfaces are
spheres, while / ? = K = Orequires plane wave surfaces. The
corresponding shearfree hypersurfaces are therefore light
cones in the diverging, and null hyperplanes in the nondi-
verging case. Some texts, ¢.g., Ref. 16, also contain the re-
sults for complex Euclidean space: H * = K540 characterizes
Monge surfaces, i.e., metrically nondegenerate surfaces
ruled by complex, null, nonparallel straight lines, while
H*® = K = 0 characterizes “isotropic cylinders,” cylinders
with complex null generators. Spheres and planes are special
cases. [One can obtain the results in the complex case by
referring the surface to null coordinates: then the Gauss
equation(s) associated with the zero(s) in the matrix of the
second fundamental form following from H* = K ( = 0)
yield straightness (and constant direction) for the null co-
ordinate lines of one of the two families.]

To obtain the null hypersurface whose t = Osectionis a
given isotropic cylinder we proceed as follows. Let / be a 4-
vector parallel to the generators of the cylinder. Then /is a
null vector also in the four-dimensional sense. If p(a) de-
scribes any curve (different from a generator) on the cylin-
der, then the normals & of the hypersurface are null and also
tangent and have to be chosen orthogonal to dy/da and to /.
Since it is generated by its null tangents, the hypersurface
will have a parametric representation of the form

x(a,By) = y(a) + Bl + yk (), (A1)

where the first two terms on the right describe the cylinder.
To pass from a parametric representation to an equation, i.e.,
to eliminate a,f3,y, we appeal to the fact that all null vectors
orthogonal to the given fixed null vector / are contained in
two fixed 2-planes (one self-dual, the other anti-self-dual)
each of which we imagine as spanned by / and another fixed
vector m satisfying m? = 0 = m/. Hence & () has the form
k(@) = A (a)l + p(a)m, and since it varies differentiably, it
must stay in one of the planes. Therefore, we may easily
eliminate 3,y from (A1) by forming

Ix = Wa), mx=mya), (A2)

and may now eliminate « in the form f(/x,mx) = 0.

A family of null hypersurfaces of this kind is obtained
by considering a family of isotropic cylinders, i.e., taking a
family of curves y(a,7) and a family of null vectors / (7).
Then, of course, we must also have m = m(7), satisying
m*(r) = m(r){ () = 1 (7) = 0. The above elimination proce-
dure leads to f{/ (r)x,m(7)x,7) = 0, and if this is to be the
same hypersurfaceas @ (x) = rforall r, then @ (x)is given by
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the implicit equation
SU(P)x,m(P)x,®) =0. (A3)

One may check by implicit differentiation that @ satisfies
(V@ )* = 0,0 = 0. Inthereal case, /and m must be propor-
tional, which gets us back to (2.1). If, in the complex case, /
and m are constant, one gets Erugin’s explicit solutions

® = ¢ (Ix,mx). Erugin’s implicit solutions, not given in Ref.
1 because of their complicated form, correspond to the gen-
eral case (A3).

APPENDIX B: YM NULL FIELDS AND ROBINSON'S
THEOREM

We call a YM field null iff all isospin components of the
field are null with the same degenerate principal null direc-
tion. The field can then be written ¥, =&, k, —&,k,,
where k* = 0, @,k* = 0. From this, one derives that the
symmetric spinor @,,, corresponding to F,,, (cf. Ref. 17 for
spinors) must be of the form

Py = fhpKny, (B1)

where « is the spinor corresponding to the null vector . It
has been pointed out'® that the source-free YM equations
imply the geodesic-shearfree condition of the null congru-
ence tangent to k. Indeed, these equations have the spinor
formD™ <PMN = 0, where D ™™’ is the gauge covariant (in
curved space, the combined Riemannian and gauge covar-
iant) derivative in spinor form. Inserting (B1), we get (V-
Riemannian covariant derivative)

0= DMM’(};(MKN)
= Kk D MM 4 floep V™ iy + k3 VM iy, (B2)

Transvecting with « ', we arrive at the geodesic-shearfree
condition
Ky V"™ ky =0 (B3)

(Refs. 6 and 18.) Thus the non—Abelian character of the YM
theory plays no role in the argument, since the unknown
potential enters only the D ™™’ f term in (B2) which drops
out.

One would like to know whether the converse state-
ment (and thus Robinson’s theorem) will hold in the non-
Abelian case as well, namely that from a geodesic-shearfree
k one could always construct a sourceless null YM field by a
suitable choice of @, (or f). We shall show now that this is
indeed the case. (B3) implies the existence of some g* " such
that

KMVMM 'KN =gM Ky (B4)
We want to show that the system
kaD "™ F 4 F @ + VMM, ) =0 (BS)

hasa solutionz because multiplying (B5) with x, and using
(B4) then gets us back to (B2). The existence of solutions to
(B5) depends on the question whether the integrability con-
dition to it is satisfied identically in f Spinorially, this is
obtained by applying «VD - to (BS). Using (B5) and (B4), it
can be written as

kMDD M’ MMf+f{g VMM s
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+ K"V 8+ KV pp VM hepy ) = 0 (B6)

Now the curly brackets vanishes on the basis of (B4)—noth-
ing of the non-Abelianess enters here— as one can see by
some straightforward spinor algebra (and, in the curved
space case, using a spinorial Ricci identity). To treat the first
term, we note that fis a space—time scalar, such that the
spinor form of the relevant isospin Ricci identity is just [(...)
means symmetrization)

D(NM‘DM)M’fE¢MN X/, (B7)
which vanishes by (B1). Thus also the first term in (B6) is
zero identically in /, Q.E.D. { Vectorially, (B5) is equivalent
toasystem of form D, f= Kf, D,, f= Mf,wherem,, is the
vector corresponding to x,, 1%, 1,, being a spinor satisying
Kpt™ = 1; D, D, arecovariant directional derivatives. In-
tegrability is checked using the commutator [D,,D,, | f
which by the relevant isospin Ricci identity equals
Dy ,f + k*m"F,, X f where [k,m] is the Lie bracket. By
the definition of the null field, F k# = 0, which reduces the
problem to the Abelian case. }

It has been pointed out'® that for null fields with a twist-
free (i.e., hypersurface orthogonal) ray congruence & a par-
ticularly simple gauge for the potential may be found. In-
deed, in this case k,, is (proportional to) a gradient u ,, such
that the YM curvature form F: = 4F,, dx* Adx” may be
written as @ A du, vanishing upon restriction to the hyper-
surfaces # = const. Thus the potential form 4, dx* = :4
may be gauged away within each of these, i.e., may be gauged
to be 4 = ddu, whence F = dd Adu.

For null fields, the energy-momentum tensor 7,,,
becomes

T, = —a&,d%k,k (BS)

u uve
where a scalar product in the sense of an invariant group
metric is understood. For any observer with 4-velocity v,
the Poynting 4-vector S, = T,,,.v" of the null field is light-
like. It has been remarked'® that the converse is also true (if
the invariant group metric used is definite).

APPENDIX C: THOMSEN'’S INVARIANT

Thomsen defines his conformal invariant of a plane (or
spherical) curve as follows. (We give only the formal descrip-
tion without geometrical motivation.) Start from v(o) as de-
fined in (3.8), satisfying v"? = 1. Let the 4-vector y(0) be a
solution of the conditions

w=p =p"=0, y=1 (C1)
Define

x:=v+y. (C2)
Let 0 be the solutin of the conditions

Di=pbx=0x'=0, Dv=1 (C3)
Then the invariant is

b:= —2(ux")(x"). (C4
We wish to verify thatb = — v’ = — K.

First we assemble the following table of scalar products
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between v, V', v”, v"’ by differentiating the relations v? = 0,
v'i=1:

v v v v
0 0 —1 0 ©5)
v o0 1 0 -K
v” . —1 0 K iK'’
' 1 0 —K 1K' K'+41
The entry v”"? = K * 4 1 follows from
det(uv'v"v"’y =€ = + 1 using 1 = (det)? = — determinant

of table = v”’* — K2 Differentiating the determinant, we
find det(vv'v”"v ) = 0, i.e., v ¥ is a combinatin of v, v’, v” with
coefficients that are found from the scalar products vv”,
v'v*,v"v", which in turn are obtained by differentiating the
last line of the table. This way we obtain (3.10).

Next we need y of (C1), which obviously must be a mul-
tiple of v Av’ Av", whose square is just (minus the first up-
per 3 X 3 minor of the table) = 1. Thus

y=TvAv Av", (C6)
y = v Av Av", €7
y = FwAv" Av" + oAV AvY)
= "o Av" Av"’ — Ky, (C8)
where in the last step we have used (3.10). y' satisfies
yv'=0, y*=0 (€Y

(the second equation comes from another minor of the ta-
ble). Thus when x is defined as in (C2), it satisfies [by (C5),
(C1),(C9)]

xt=1,

(C10)

as required in Thomsen’s procedure. Also, from (C5) and
(C8),

vx" = — L

x't=1

(C11)

Making an ansatz
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v=av+ B + " + ", (C12)

the conditions (C3) in the order ov = 1, bx = 0, ix' = 0,

v ? = O determine the coefficients as (use oy = Sv"'y = — Je,
Wy ="y = ye)

y=—1 é=€e(= +1),

B=eK+1), 20=eK’' —K—2. (C13)

Inserting (C12), (C13), (C11), into (C4) yields the desired
result

b= —K. (C14)
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The role of the Onsager-Machlup Lagrangian in the theory of stationary
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The Onsager-Machlup Lagrangian is shown to have a direct relevance to a cost function for a
stochastic control problem. It is found that any stationary diffusion process can be regarded as a
solution to the stochastic control problem, that is, it is controlled optimally by the
Onsager—Machlup Lagrangian. A deterministic limit of the stationary diffusion process is also
obtained as a solution to an ordinary (nonrandom) control problem which is equivalent to the usual
variational problem with respect to the Onsager-Machlup Lagrangian.

I. INTRODUCTION

In recent nonequilibrium statistical mechanics one en-
counters the problem of finding deterministic paths (or most
probable paths) for dynamical systems described by stochas-
tic differential equations of It6 type (or equivalently by
Fokker—Planck equations). I shall call it the Onsager-Mach-
lup (OM) problem hereafter.

Beginning with Onsager and Machlup’s monumental
work, ! many authors have approached the OM problem
with different methods. They seem to be classified mainly
into three groups, that is, those who utilized the path integral
formalism, - those who worked with the canonical opera-
tor formalism, *® and those who preferred the probabilistic
formalism. *'° [ have also proposed a fundamental approach
to the OM problem in the light of Onsager and Machlup’s
original spirit. '

In the present paper, reformulating the OM problem as
a stochastic control problem, I will show a basic role of the
OM Lagrangian in the theory of stationary diffusion
process.

The main sources for the stochastic calculus fully uti-
lized in this paper were Nelson’s lecture note '* and Itd’s
papers. >

Il. STATIONARY DIFFUSION PROCESS

By the notion of an n-dimensional stationary diffusion
process, I denote an R”-valued Markov process X (¢),
t€[0, 0 ), described by a stochastic differential equation of It6
type,

dX =a(X)dt +dB, X(0)=x,, (1)

where the drift vector field @ is assumed to be bounded and of
class C2, B (t), t€[0, » ), denotes an n-dimensional standard
Brownian motion (i.e., an R "-valued Wiener process with
diffusion constant equal to unity), and x,eR". It is a Markov
process with invariant measure u(d "x) (i.e., stationary prob-
ability distribution). A probability distribution of X (¢),
p'(d"x) = Prob{ X (¢)ed "x}, solves the Fokker—Planck
equation,

a

Ep’ = — div(ap’) + div grad p’, 2)
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weakly, and it has an asymptote lim, ,_p'=p in L_(R").
Let {.%,} c(0,.) e anincreasing family of g-algebras of
measurable events such that X (¢ ) is % , -measurable for each
t€[0, «0 ). Then one can introduce the notion of mean deriva-
tive of X (¢) by
DX (1) =12%1E X(t+h2 —-X@®)
!

where E [-|.# ] means to take a conditional expectation with
respect to the o-algebra .7 ,. Equations (1) and (3) give us

Z, ], 3)

DX(@)= l;mE [dX (et + R 1)/h |7, ] =alX (1)) C)]
10

The mean derivative of f (X (1)), where fis a function of class
C?2, is also defined

DA () = l,ff?E f(X(H—h)h) _f(X(t))’?,}, )
obtaining
DF(X (1)) = I;g)lE [df (XNt +h 1)/h )T,
= (a-grad f+ div grad /)X (1)). (6)

Here I have made use of the chain rule in stochastic calcu-
lus ' and of Eq. (1).

A considerable number of stationary diffusion pro-
cesses with which physicists have encountered are of the gra-
dient type, i.e., the drift vector field is written

a= —grad A4, @)

where A4 is a positive bounded R-valued function of class C >.
I shall restrict myself to such a case as Eq. (7).

Now, following Nelson, !? I shall define the mean veloc-
ity and the mean acceleration of the stationary diffusion pro-
cess X (1), t€[0, 0 ), by

DX (1), t€[0,0) ®8)
and
DX(t), t€[0,), 9
respectively. A straightforward calculation gives us
DX (t)=DDX (1)
= (a-grada + div grada)(X (¢))
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= grad(3|a| * + diva)(X (1)), (109)

where the gradient property of the drift vector is essential in
deriving the last expression in Eq. (10). Then a question
arises: What does Eq. (10) tell us about? This is the very
starting point of the present approach to the OM problem
which will be developed in the following sections.

1. STOCHASTIC CONTROL PROBLEM

Prior to proceeding with the OM problem it seems
worthwhile to make here a remark on the role of Newton’s
equation of motion

(mass) X (acceleration) = (force). (11)

It has complementary characters; on the one hand, when
(mass) and (force) are known a trajectory of the particle
should be obtained by integrating (acceleration), on the oth-
er hand, when (mass) and (acceleration) are known (force)
acting on the particle should be found (mass) times (accel-
eration). The latter property of the equation of motion gives
us the following reformulation of the OM problem.

Let us introduce an R-valued function

V,= —1ila]* — diva, (12)

call it OM potential. Regarding the boundedness of a, I can
make V, negative by adding a constant. So V, is assumed to
be negative hereafter. Then one may interpret from Eq. (10)
that the stationary diffusion process X (¢), t€[0, ), is con-
trolled as if it obeys the equation of motion

DX (t)= — gradV, (X (1)). (13)

By the notion of a reduced OM Lagrangian, I denote an R-
valued function

L i (2(1),2(0)) = 5|20 — V. (2(t)), (14)
where z(1), t€[0, &0 ), is a path of class C ' in R ” and
2(t ) = dz(t )/dt. The theorem below allows us to reformulate
the OM problem as a stochastic control problem.

Theorem 1: The stationary diffusion process X (t ),
t€[0, ), described by Eq. (1) is a solution to the stochastic
control problem,

dZ =b(Z)dt +dB, Z(0)=x,, (15)

where the drift vector b of class L (Lipschitz functions) is con-
trolled to minimize a cost function

‘ f Lon@ (L.DZ @)t |, (16)

Iim —
I »e T

Cost(b)=FE [

and E [-} means to take an expectation.

It is worthwhile to notice that the theorem is essentially
the same statement as that of Holland, !* and here I follow

his proof.
Proof: 1 have an identity
divgrad 4 — Yjgrad 4 |* — V, =0, 17

which can be written
divgrad 4 + min(b.grad4 + 36> —V,)=0, (18)
b

where the minimum is taken over all R "-valued functions of
class L. Then for any b, I have an inequality
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div grad 4 + b-grad 4 + 4|6 |* — ¥, 0. (19)

Substituting Z (¢ )intheinequality, integratingover [0,7 ]and
dividing it by 7, I obtain

1 ("
FJ (b-grad 4 + div grad A )(Z (¢))dt
0
1"
T AT 20)
0
The chain rule in stochastic calculus gives us

T
f (b-grad A + div grad 4 )(Z (¢ ))dt
0

T
- [[da@aen=1@@) -6 @
0
which yields
A(Z(T)) — A (x r
Ea) A6 1 j Glb |> = V)Z (t))dr>0.
T T Jo
(22)
Taking the expectation I find
E[A(Z(T))] — A(x,)
T
T+
LE [ LTJ ap 2 — Va)(Z(t))dt]>O. (23)
0
Now what is left for us is to pass to the limit 7-— o, obtaining
—— 7‘
E [ fim lT Qb = VNZ (@))dt ];o. 24)
T'— oo 0
This claims Cost(b )>>0. To complete the proof I claim
DZ(t)=b(Z()), (25)
and that the cost function is minimized by q, that is,
Cost(a) = 0. (26)

This is because the equality in Eq. (20) is achieved by setting
b= —grad4 =a. QED.

I have found a basic role of the reduced OM Lagrangian
(14) in the theory of stationary diffusion process. Notice that
Theorem 1 gives us a global characterization of the original
stationary diffusion process X (¢ ), 1[0, « ), because the cost
function contains the long-time average lim, __(1/7)
§&--dt. However it is also possible to obtain a local version of
Theorem 1 in the sense that for each f€[0, o0 ) the original
process X (s), s€[0,2 ], minimizes a t dependent cost function.
This will be shown in the next section.

IV. ONSAGER-MACHLUP LAGRANGIAN AS A COST
FUNCTION

In the previous paper '! I found that the probability
distribution of the stationary diffusion process X (t ), t€[0, 0 ),
is given approximately in the form

pla exp[ — J(;LOM(Z(S),Z"(S))dS E 27
where
Lom(z(2),2()) = 412(r) — a(z(t))|* + divalz(2)) (28)

is the OM Lagrangian and [ - },,,, means to take a maximum

max
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value over continuous path z(# )’s connecting x, and xed "x.
The expression (28) allows us to conclude that a variational
problem

fLOM(z(s),z'(s))ds = minimum, 29
(0]

determines a most probable path. Namely the most probable
path, say (¢ ), satisfies the Euler-Lagrange equation

z(¢) — Lgrad|a(#(?))| > — grad diva(z(z)) =0,  (30)
Z(0) = x,. 3D
Let us introduce a notion of OM action form
d Top(2(2),2(2 ),dt,dz(2))
= Low (2(2),2(2))dt
= L {ml2(2),2())dt — alz(¢))dz(t). 32)

Then 1 obtain
Theorem 2: The statement of Theorem 1 is also valid
with respect to the local cost function

Cost’'(b) = E [ fldIOM(Z (5),DZ (5),ds,dZ (s))]

=E [ J:L onlZ (5),DZ (5))ds

_ f AZ $)odZ (s)], (33)

where [--0dZ (s) denotes the stochastic integral of the Fisk—
Stratonovich type. "
Proof: A straightforward stochastic calculus gives

dloy = A|DZ | + L|al® + diva)dt —ac dZ

= (416 |* + i|a|* + diva)dt — a-dZ — Lda-dZ

= (612 + Sla|* + diva)ar

—a-bdt — a-dB — divadt

= 1|b — a|%dt — a-dB. (34)
This yields by integration

J:dIOM = ‘[:%[b (Z () — a(Z (5))|%ds

— Lra (z(s))-dB (s), (35)

and one finds by taking the expectation

Cost'(b) = E [ fo ldIOM]

£| [He@o) - azoyras|

>0, (36)

where the martingale property of the stochastic integral of
It type is used. The local cost function is minimized by
setting b = a. Q.E.D.

Theorem 2 claims that the original stationary diffusion
process X (¢), t€[0, o), is completely characterized by the
OM Lagrangian (28) or by the OM action form (32). It is
optimally controlled to keep the mean OM action integral
minimum.
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V. DETERMINISTIC LIMIT

In the recent nonequilibrium statistical mechanics we
have been much interested in the asymptotic behavior of a
stationary diffusion process X (¢), #€[0, o ), of the type

dX, =a(X;)dt+ A ~'dB, X,(0)=x, 37
in the limit A— 0, where A€R is a system size parameter.
The limit A— oo corresponds to an infinite volume limit.

In the limit A— oo, randomness of the dynamical sys-
tem (37) vanishes and X, (¢), t€[0, ), might be expected to
converge to a deterministic path in some sense. To investi-
gate the deterministic limit is the final goal of the OM prob-
lem. I shall approach the goal by making use of the results
obtained in the previous sections.

Let us start with the stochastic control problem

dZ,=b(Z)dt+1 ~'dB, Z,(0)=x,, (38)

with respect to the cost function

Cost'(b) =E[ f dIOM(ZA,DZA,ds,dZA)]
0

=E [ jo L oi(ZnDZ, )ds — L Ia(Z,{)OdZA } (39)

which recovers the original stationary diffusion process
X, (2), t€[0, ), uniquely. From Eqs. (38) and (39) it is easy
to observe that in the limit A— o« the stochastic control
problem tends to an ordinary (nonrandom) control problem

B0 _ o)), 2(0) = xo (40)
dt

under the control

Cost'(b) = J- ldIOM(z(s),z'(s),ds,dz(s))
o
= J;)L’OM(Z(S)»Z.(S))dS - LG(Z(S))-dz(s)

= J(;LOM(z(s),z'(s))ds

= minimum. 41)

Namely, a deterministic limit of X, (¢ } is obtained as an opti-
mally controlled differentiable path z(z ), €[0, ), with re-
spect to the cost function (41). Condition (41) can be
achieved by a solution to the Euler-Lagrange equation

d Loy ILlom _0

dt 3z(t)  dz(t)
The deterministic limit of the stationary diffusion process
thus obtained completely agrees with that obtained in the
previous paper, '' i.e., Eq. (30).

I have found in the realm of the stochastic control the-
ory that the variational problem with respect to the OM
Lagrangian gives us the deterministic path of the original
stationary diffusion process. It is worthwhile to notice that

the deterministic path is also a solution to the ordinary (non-
random) control problem (40) under the control

(42)

T

Cost(b) = TELT L omlz(2),2(8))dt = minimum. (43)
T~ 0
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This is guaranteed by the fact that the reduced OM Lagran-
gian differs from the OM Lagrangian only in a total
differential.

VI. CONCLUDING REMARKS

I have investigated the OM problem from a stochastic
control theoretical point of view. The OM Lagrangian was
found to play a role of the cost function by which the original
stationary diffusion process is controlled optimally. In this
section I will make some remarks on the OM problem.

Firstly I want to mention that from the present view-
point, unlike the path-integral approach >~* and the probabi-
listic one, *'° the canonical operator formalism *® seems to
have a possibility of generating a profound approach to the
OM problem. This can be seen easily by rewriting the sto-
chastic control problem (15) and (16) in terms of a white
noise,

X(t)=b(X(®)+B() X©0)=x,, (44)

where B (r) is a white noise ' defined on .¥’(R ") (tempered
distribution space). The canonical operator formalism can
be mostly visualized in the realm of Hida calculus '’ (a sto-
chastic calculus of generalized Brownian functionals) in
such a way that

0-(of) ().

K 79';(—[))( %@))] =0t —s), (46)

where ( )* denotes an adjoint operation and [ , ] a commuta-
tor. '7-2° By substituting Eq. (45) into Eq. (44), one finds that
the Wick expansion, frequently used in the canonical opera-
tor formalism, is nothing but the Wiener-Itd decomposition.
Therefore, the present approach in the realm of the stochas-
tic control theory can be put on the line of the canonical
operator formalism with the help of Hida calculus. The de-
tails of this will be given in a forthcoming paper. '
Secondly I want to point out that the present formula-
tion of the OM problem from the stochastic control theoreti-
cal point of view gives us a profound way of understanding
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the quantum vacuum structure of the non-Abelian gauge
field and the instanton effect. This is because the whole in-
stanton effect can be calculated by means of a stationary
diffusion process of the same type as treated here. 22%* De-
tails will be published elsewhere.
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A model for the motion of a charged particle in the vacuum is presented which, although purely
classical in concept, yields Schrodinger’s equation as a solution. It suggests that the origins of the
peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical

description of the radiative reactive force.

I. INTRODUCTION

Stochastic models of quantum mechanics attempt to
reconcile the postulates of quantum theory with modern
probability theory, and to provide a space-time picture of
quantum phenomena. The traditional inspiration for this ef-
fort is rooted in the extensive debates of the 1920’s and 30’s
over the interpretation of quantum mechanics. A standoff
developed, which persists to this day, between the Bohr com-
plementarity school and the statistical school usually associ-
ated with Einstein.'”

Today the Bohr interpretation is much more widely ac-
cepted. It asserts, in a nutshell, that given a physical state,
then there is a state vector of some Hilbert space which de-
scribes this state completely, but only statistical properties
about the physical system can be deduced from this pre-
sumed complete description. A number of forceful (and un-
resolved) completeness arguments againsts the Bohr view
have been made,*”’ and a number of the founders of modern
quantum theory did not accept this view, including Ein-
stein,’ Schrodinger,® and De Broglie.®

There are several reasons why the Bohr view is domi-
nant. Rigorous no-go theorems make stochastic or hidden
variable models difficult to construct.”'? Despite these, there
are statistical theories which do reproduce all of the statisti-
cal assertions of quantum mechanics, such as the differential
space theory of Wiener and Siegel.’* Any such theory must
have some nonlocal features to avoid conflict with Bell’s
theorem,'? and this can present conceptual problems. The
Bohr view provides a justification for ignoring the puzzling
questions of the origins of quantum mechanics, and for con-
centrating on applications of the theory. The accomplish-
ments of the last half century have validated this point of
view.

Most stochastic or hidden variable models have some
nonclassical or difficult to understand features to them. For
example, Bohm’s early hidden variable theory'* required the
existence of a nonclassical quantum mechanical potential to
be consistent with Schrodinger’s equation. The Fenyes-Nel-
son stochastic model'*™"" also has a nonclassical quality
about it. The dynamical assumption of Nelson,'® for exam-
ple, is not derived from first principles, and implies the exis-
tence of nonclassical forces acting on the particle. In most
statistical models of quantum mechanics there is a gap in the
derivation of quantum mechanical laws from classical laws,
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usually in the form of postulating a quantum mechanical
potential or its equivalent. These gaps make the models un-
convincing. An exception is the derivation of Schrodinger’s
equation from stochastic electrodynamics (SED)," where all
quantum behavior is derived from a classical Langevin equa-
tion. The mathematics of this derivation are quite complicat-
ed, however, and there are several points of nonrigor owing
to the singular nature of the random force in this model.
Moreover, the SED model yields a Moyal type of phase
space picture,'” whereas the Markov model of Fenyes and
Nelson seems better adapted to describing quantum
mechanics.

This paper presents a simple model, within the Fenyes~
Nelson scheme, which provides an explanation of the origin
of the quantum mechanical potential, and of the steady state
Schrodinger’s equation. This model describes the diffusion
of charged particles, and it includes the radiative reactive
force. Neutral particles are not considered, but all known
finite mass neutral particles are believed to be bound states of
charged particles, so the results derived are not limited by
this. The vacuum in which these charged particles move is
assumed to have a finite temperature, but this temperature
may be taken to zero. Inherent in the derivation is the con-
cept of a vacuum alive with fluctuations and randomness.
This concept of a nonempty vacuum has been slowly creep-
ing back into physics with the work of Wheeler.?* Boyer,?'
the models of Bohm and Vigier,*? and De Broglie,** and more
subtly in the whole quantum field effort with its infinite
vacuum fluctuations.

The model presented is not a complete treatment of the
problem. 1t relies on two reasonable postulates: The charged
particles are described by a continuous Markov process in
configuration space, and they are assumed to satisfy Gibbs’
classical distribution, where the radiative reactive force is
included. In the limit of zero temperature, these postulates
imply the Schrodinger equation and the existence of a quan-
tum mechanical potential, provided the diffusion constant of
the theory has a certain value.

Il. THE MODEL

Consider the Schrodinger equation for a single particle
in a potential V-

[_£A+V]¢Z[ﬁa_w, ¢:ek+i5. (D)
2m ot
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It is equivalent to the following two equations:

at m
and
2 2 172
2 (vSyY + V- ﬁ_@__:_ﬁa_s, )
2m 2m p'? ot

where R and .S are chosen to be real. Equation (2) simply
reflects the conservation of probability, and Eq. (3) is the
Hamilton—Jacobi equation, but with an extra quantum me-
chanical potential:

ﬁ2 Apl/Z

2m pl/Z

VQM = (4)
Were it not for this potential term, Schrodinger’s equation
could be interpreted as the diffusion of Newtonian particles
whose initial conditions were not completely specified. This
potential term is required in most classical models of quan-
tum mechanics. For example, Madelung’s hydrodynamic
model requires it,”* Bohm’s early hidden variable model re-
quires it,'* and De Broglie’s theory of the double solution
requires it.* This term is also implicit in the dynamical as-
sumption of Nelson,'* where Eqs. (2) and (3) are interpreted
as diffusion equations for a continuous Markov process. It is
the possible origin of this extra term which shall be examined
in this paper.

The quantum mechanical potential implies an unusual
force, which acts on the particle, but which depends on the
statistical properties of an ensemble of particle trajectories.
This kind of behavior is difficult to understand in classical
statistical mechanics. Indeed, it is this extra potential term
which leads to quantum interference effects, and the difficul-
ty of describing quantum interference in terms of classical
statistical theories has been forcefully stated by Feynman.*
Despite this, it appears that the model presented does give a
possible explanantion of this extra potential in a classical
statistical theory. The reason is that the radiative reactive
force playes a large role in the theory about to be presented.
Preacceleration associated with this radiative reactive force
was not considered by Feynman in his arguments.

Consider a charged particle in motion in the physical
vacuum. Let this particle be described by classical mechan-
ics, and let its motion be nonrelativistic. Then it satisfies the
equation

mya(t) = f dse “F(x(t + 7s)1), (5)
(4]
where
2
R ©
3 me’

and where ¢ is the charge of the particle, m, its mass, and 7
has units of time. For an electron, 7~ 10 ~ *%s, ifgand m,, are
taken to be the observed charge and mass of the electron. For
most practical calculations, such a brief preacceleration can
be ignored. It has played little role in Newtonian physics. As
is shown by Rohrlich,? Eq. (5) is the unique nonrelativistic
limit of a perfectly well-defined relativistic theory.

There are two ways that the preacceleration effect can
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become amplified in the model to be presented. First of all, if
g and m,, are not the observed charge and mass, but rather
are bare quantities, then 7 can be much larger. If the diffu-
sion constant of the Markov theory, which will be used to
describe the particle is large, then preacceleration also be-
comes more important.

Suppose that the vacuum is alive with random field
fluctuations, and suppose that it has a small temperature 7.
A more precise definition of this concept will not be attempt-
ed. It will only be assumed that the classical Gibbs distribu-
tion is satisfied. If the radiative force were ignored, then the
particle would reach a state of equilibrium at temperature T,
and its spatial density would be given by the classical Gibbs
distribution,

p(x) —e - l'(x)/k'l; (7)

up to a normalization constant, where k is Boltzman’s con-
stant. This equation may be written

kTVin(p)= —VV=F,, (8)

Equation (8) would not be satisfied by a charged particle
which experiences a significant radiative force. The statisti-
cal distribution in this case is simply not known. Two as-
sumptions shall be made to generalize Eq. (8) to include ra-
diative forces in the simplest possible way.

The first assumption is that the charged particle, in
thermal equilibrium with the vacuum, is described by a con-
tinuous Markov process on configuration space. Using Nel-
son’s notation'® x is assumed to satisfy the stochastic differ-
ential equation

dx(t) = b(x(¢))dt +d W(1), &)
where W is a three-dimensional Wiener process with
E(dW(t)dW (t)) =2v 6, ,dt (10)

and where v is called the diffusion constant. This type of
process was studied by Nelson,'*"” and he showed that
Schrodinger’s equation could be derived, with a dynamical
assumption, provided v = #/2m. In fact, this result can be
generalized,”” and any value of v greater than zero can be
used to develop a model of Schrodinger’s equation. The solu-
tions to (9) are Markov processes on configuration space,
and in general, velocities are not well defined. This Markov
description must be viewed as an approximation to the actu-
al motion of the particle, valid so long as dt is not too small in
Eq. (9). If Eq. (9) were taken to be true for arbitrarily small
dt, then the particle would be relativistic, and the nonrelati-
vistic approximation would be inaccurate.

Imagine that the charged particle, in interaction with
the finite temperature vacuum and subject to an external
potential V, has reached a stationary state of thermal equilib-
rium described by a probability density p(x). Consider the
following conditional expectation:

F.(x)= — E(J dse *VV{x(t + 7)) | x(t)= x). an
(¢]

From Eq. (5), it is seen that this expresses the expected value

of the total force on the particle, including preacceleration,

given that at time ¢ the particle’s trajectory passed through

the point x. This equation represents the best estimate that
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can be made of the instantaneous force acting on the particle
at position x and time ¢.

By analogy with the classical Gibbs distribution [Eq.
(8)], the following equation for the charged particle is
postulated:

kT V In(p) = Fg(x). (12)
This constitutes the second postulate. All it says is that the
classical Gibbs distribution is satisfied for the total force giv-
en by Eq. (11), and including radiative effects. Implicit in Eq.
(12) is the assumption that F. has vanishing curl. This will
prove to be consistent.

F,, as expressed in Eq. (11), will depend on bin Eq. (9),
and therefore Eq. (12) will be a differential equation for p. To
derive this equation, the Markov transition function is used:

P, (yx)= lim 1 P(x(¢)ed’y | x(u) = x),
a‘y—o0 d3y

(13)

t>u

which satisfies the forward and backward equations of
Kolmogorov?®:

aJ
'_Pr - u(y1’x) + Vy’b(y)Pz—u(yrx) - VAyPt—u(y’x) =0,

ot
tsu,  (14)
aiP,,u(y,x) 4 b)Y P, (p) + VAP, (yx) =0,
U
t>u. (15)

F, may be written as

Fo(x) = — J dse—sjwyPn(y,x)VV(y). (16)

P must satisfy two limiting conditions: The first is a state-
ment of continuity, and the second is a statement of
ergodicity:

P yx) =8y —x), an
P_(yx)=p(y). (18)

Equation (18) requires some qualifications. If the density p
vanishes at some point, then Eq. (18) is not quite valid, as has
been shown by Albeverio and Hoegh-Krohn.? In this case,
space is divided up into disjoint regions bounded by surfaces
p(x) = 0, and the Markov transition function vanishes un-
less x and y are in the same region. Equation (18) is true if x
and y are in the same region in this case, and this is sufficient
for the results below.

From Eq. (18) and Eq. (14) it follows that, taking the
limit t— oo in (14),

b =1V In(p). (19)
Now, using the backward equation [Eq. (15)] together with
the expression for F [Eq. (16)] one obtains
(b-V + va)F.(x)

=~ [Taser[avLrowwrom, @
0 ars

where it has been assumed that the order of differentiation

and integration can be freely interchanged. Integrating (20)

by parts, and using (17) then yields
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[1—7(bV + vA)|Fp(x) = — V¥ (). @2

At this point, the Gibbs distribution [Eq. (12)] is used to
substitute for F in Eq. (21). One finds

1

[1 =70V +2a)]1V lnfp()] = — YV (). (22)
Defining R by
R =4 1In(p), (23)
and using (19) and (22), one finds:
_ 2 - _ Lyy 24
VIR — ((VR)* + 4R )] s (24)

Integrating this expression, and rewirting it, one obtains

[ —27vkTA + V + 2kTR ]eR = Ae®, A =const.  (25)
This can also be written as

B 1 Apl/Z
p(x)—exp[ — E(V(x)—erkT i —/l)]. (26)

This last expression clearly displays the existence of an extra,
and unusual, potential given by

— 2rvkTAp'?/p"2. @7

This extra potential term is due to the radiative reactive
force, and it has exactly the same form (including the right
sign) as the quantum mechanical potential [Eq. (4)]. Equa-
tion (25) bears a remarkable similarity in form to the Schro-
dinger steady state equation.

The strength of the radiative preacceleration effects de-
pend on the magnitude of the gradient of (27) relative to the
gradient of V. This depends on the factor

2

y=2mvkT= 2 4 ka .

mgc

(28)

This factor y determines the magnitude of radiative effects.
It is interesting that one cannot distinguish between different
values of ¢, v, and my, but only different values of y. For

small 7, y can be large if the ratio g°v/m,, is large. Since vis a
free parameter in this model, a large radiative correction is
possible for large v, regardless of the size of the other factors.

Suppose that
# 4 g*vkT
= —=c, 29
2m 3 mo(:3

where m is the physical mass, and the possibility that it is
different from the bare mass m, has been allowed. Then Eq.
(25) becomes

(_ ﬁA + ¥V + 2kTR )eR = AeR (30)
2m
and (26) becomes
1 ﬁZ Apl/Z J
- — |y .z — A1l |
p(x) exp[ kT( x) 2m 2 ) Gh

Equation (30) has the same form as Schrodinger’s equation,
except for the extra term in the potential, 2kTR. This extra
term can be interpreted as representing the diffusion force. It
prevents the occurence of zeroes in ¢ = e®. Equation (31) is
the analog of the Gibbs distribution for neutral particles [Eq.
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(7)], with the quantum mechanical potential included, but
due to radiative forces. If Tis very small, then (30) becomes

[(~#2/2m)A + Vg =Av (32)

which is just Schrodinger’s stationary state equation.

Equation (30) is a classical model for steady state quan-
tum mechanics with one free parameter, the temperature of
the vacuum 7. It is nonlinear, and in general difficult to
solve. In the limit 7—0, Eq. (32) becomes exact. It is an
experimental question what 7'is, assuming that the model is
taken seriously.

Although the possibility that m and m,, are different has
been allowed, it is interesting to note that if m = m, orif m
and m,, are proportional with a fixed factor, then both sides
of Eg. (29) have the same mass dependence. This means that
vg® may be chosen to be mass independent. If g is taken to be
the electronic charge, then v could be mass independent.
This is consistent with the generalization of the Fenyes~Nel-
son model,”” where any value of v can be used to construct a
model of quantum mechanics. If v is mass independent, then
the underlying thermal agitation could be gravitational in
nature. This could be consistent with Wheeler’s concepts of
superspace.”

If Eq. (32) is a good approximation, that is if 7'is small,
then energy levels are quantized, provided the usual Hamil-
tonian operator is taken as the energy operator. Quantiza-
tion of the energy levels of harmonic oscillators leads,
through fairly well known arguments,* to a derivation of the
Planck radiation law. The present theory, if correct, could
influence the equilibrium of radiation at finite temperature.
This could provide a way out of the Rayleigh—Jeans
spectrum.

The question that remains is what could determine 7,
and how could a more complete model be constructed. If T'is
nonzero, then it is reasonable to expect to see black-body
electromagnetic radiation at this temperature in the vacu-
um. The spectrum of radiation in the vacuum is not exactly
black-body, but in the microwave region, a Planck spectrum
has been observed at a temperature of 2.76° K.*! The prob-
lem with this is that the radiation may not yet have reached
thermal equilibrium. It is possible that 7"equals this radi-
ation temperature, and this deserves some consideration, but
this does not appear to be a necessity, and this possibility will
not be considered here.

The results of this section sould be compared with the
SED Langevin approach.' In that model, Schrodinger’s
equation is derived for the diffusion of an electron in interac-
tion with zero point background radiation. A number of ap-
proximations are made to derive general results, and the ra-
diative reactive force playes a crucial role. It is hoped that
the present model complements and perhaps sheds some
light on the SED calculation. Although less complete, the
present model is much simpler than the SED model, and it is
felt that this simplicity helps to isolate the essential ingredi-
ents in the relationship between quantum mechanics and
stochastic theories with radiative reactive forces.

Iil. CONCLUSION

Charged particles in interaction with a low temperature
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vacuum can be expected to satisfy a Schrodinger type equa-
tion. This result offers an explanation of the quantum me-
chanical potential as essentially due to radiative reactive
forces in a stochastic theory. It also suggests that an extra
term may be present and possibly observable in Schro-
dinger’s equation if the vacuum temperature is not zero.

The main limitation of the model presented is that it
makes no attempt to account in a detailed way for the Mar-
kov motion of the particles from, say, a Langevin approach
in terms of random forces. However, by using only simple
postulates, independent of the details of the vacuum’s struc-
ture, it is felt that the derivation of Schrodinger’s equation is
less model dependent and more straightforward than, say,
the SED calculation,'® although both calculations are similar
in spirit. Moreover, the SED approach may not contain all of
the relevant vacuum fluctuations. It does not include gravi-
tational fluctuations or fluctuations in the vector fields
which mediate the weak interactions, both of which could be
important for the electron. The model presented here does
not really care what fields are involved, so long as the gener-
alized Gibbs distribution is satisfied and the motion is de-
scribed by a Markov process. In this sense it may be more
general than the SED approach.

The future of this model will hinge on the ability to
generalize it to the time dependent case, and to make it rela-
tivistic. These are major problems at the present. The impor-
tance of the preacceleration in the model helps to explain the
nonlocal character of hidden variable models of quantum
mechanics. In the classical theory, the acceleration at a par-
ticular time depends on the force for all future times. Treat-
ing this type of dynamical system statistically, one is forced
to conclude that the most likely value for the force which will
be experienced by a particle at a given position and time will
depend on the properties of the ensemble, that is, it will de-
pend on p. Any measurement made on the system will
change p, and this will change the expected force on the
particle instantaneously. This peculiar property is under-
stood in terms of the preacceleration of charged particles,
and should not be considered unphysical, unless preacceler-
ation is also considered unphysical.

It is believed that the results presented can be general-
ized to many-particle systems. The possibilities that Tis the
temperature of the cosmic background radiation, or that the
thermal agitation of the vacuum is gravitational in nature,
with v independent of mass, are intriguing and should pro-
vide fertile areas for exploration.
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Exact solution of a time-dependent quantal harmonic
oscillator with damping and a perturbative force
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The problem of a quantal harmonic oscillator with damping and a time-dependent frequency acted on by a
time-dependent perturbative force is exactly solved. The wavefunctions are found in Schrédinger

representation using the theory of explicitly time-dependent invariants and also by an expansion of the
Feynman propagator. The propagator is obtained in exactly closed form by an explicit path integration of
the classical Lagrangian. It is found that the wavefunctions and the propagator depend only on the
solution of classical damped oscillator through a single function p(t). The function p(r) itself may be
obtained as a solution of a second order nonlinear differential equation under the appropriate set of initial

conditions.

1. INTRODUCTION

Exact solutions of the Schrédinger equation with ex-
plicitly time-dependent Hamiltonians are available only in
few cases. Such problems are mostly solved by using ap-
proximation methods such as perturbation theory. An ex-
actly solvable system which has received considerable atten-
tion in literature is that of a harmonic oscillator with variable
frequency.'™® More recently Lewis and Reisenfeld® have de-
veloped a general theory of explicitly time-dependent invar-
iants for quantum systems characterized by explicitly time-
dependent Hamiltonians. They have derived a simple rela-
tion between eigenstates of such an invariant and solutions of
the corresponding Schrédinger equation and have applied it
to the case of a harmonic oscillator with time dependent
frequency. Leach'® has obtained generalized invariants for
quadratic Hamiltonians. Exact closed form for the wave-
functions of a time-dependent linear oscillator perturbed by
an inversely quadratic potential has been obtained by Camiz
et al.'' using Schrodinger formalism and a generating func-
tion. The same problem has also been solved in I'? using
Feynman path integrals and in IT" based on a simple relation
between the classical action S and the generating function of
a canonical transformation involving an explicitly time de-
pendent invariant.

The present paper discusses an exact quantum theory of
a classical forced oscillator with a time dependent frequency
and a velocity dependent damping term described by the
equation of motion:

X+ yx 4 0¥t )x = f(x), 1)
where the frequency w( ) is assumed to be a regular function
of time, f(¢) is the time dependent external perturbative
force, and y is the constant damping coefficient. As shown
by Havas," Eq. (1) may be obtained from the Lagrangian

-2 2
p=er[£ - @0 2y s, @
from which the Hamiltonian H is readily obtained as
2 2 2
H:e”"% + e [w—(;)i‘— +f(t)x]- 2)
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The aim of this work is to show than an exact closed
form for the solution of the Schrédinger equation

e o
= H()y, (3)
where H is the quantum Hamiltonian operator correspond-
ing to H of Eq. (2a) exists. At time ¢ = #, this solution goes
over into the corresponding solution of the free damped os-
cillator with a constant frequency obtained by Bopp." It is
first shown that a time dependent Hermitian invariant oper-
ator I (¢) exists for the problem. 7(¢) is then expressed in
terms of raising and lowering operators and its eigenvalues
and eigenfunctions are constructed in the manner shown by
Dirac.' These are then used to obtain the solutions of Schro-
dinger equation using the theory of Ref. 9.

An alternative manner of quantizing the system is
through the Feynman propagator K (x”,t ”; x',t ') defined as
the path integral’

Kx"t";x't") = J exp(i J,t ” L dt) Z(x(1)), 4

where L is the Lagrangian and integrations are over all paths
starting at x' = x(¢ ") and terminating at x” = x("). Since the
Lagrangian of Eq. (2) is quadratic, the propagator may be
evaluated either by using the Van Vleck-Pauli formula'”""
or by Feynman’s theorem both of which involve essentially
the computation of the classical action S (x”,¢ “; x',t ") and
differ only in the manner in which the normalization factor
is obtained. In fact, for a quadratic Lagrangian the propaga-
tor takes the form*

K" xty=F(t"t') exp[%SC,(x",t x|, )

where F (¢ ”,t") is an entirely time dependent function. In the
Van Vleck-Pauli formula, F (¢ ",t') is given by
A
27 dx"dx’
while Feynman and Hibbs* describe F' (¢ “,¢ "yasaconditional

path integral. Papadopoulos®' has recently evaluated this
conditional path integral for a general quadratic Lagran-

1/2
Scl(x”,t ,X,t )]
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gian. In Ref. 22 Goovaerts has evaluated F(z ", ') by taking
recourse to the Schrodinger equation. However, in the pre-
sentpaper K (x",t ”; x',t ") is obtained directly from Eq. (3) by
interpreting it as a limit of multiple Riemann integrals. Such
explicit path integration has the virtue of yielding both the
normalizing factor F (¢ ”,t ") and the contribution due to the
classical path simultaneously. An exact closed form of the
propagator has been obtained which depends only on the
solutions of the corresponding classical problem. Further, it
is shown that the propagator admits an expansion

K@ " x' )y = 3 "t W (x't") (6

in a natural manner leading to the time-dependent wave-
functions ¢, (x,t ) of the Schrodinger equation (3). The ex-
pansion of the propagator in terms of the eigenfunctions of
the Hermitian inariant operator 7 (¢ ) also follows from Eq.
(6).

For the sake of completeness an outline of the theory of
explicitly time dependent invariants and their relation to the
Schrodinger equation and the Feynman propagator is in-
cludedinSec. 2. Derivation of the invariant operator I (¢ ), its
eigenfunction, and solution of the Schrédinger equation has
been discussed in Sec. 3. Sections 4 and 5 refer the evaluation
of the propagator and its eigenfunctions in terms of the
wavefunctions of the Schrodinger equation. Throughout
this paper the units i = m = 1 have been used.

2. TIME DEPENDENT INVARIANT, SCHRODINGER
EQUATION AND THE PROPAGATOR

Considerasystem characterized by a Hamiltonian H )
which is an explicit function of time. Following Lewis,’ we
assume the existence of an explicitly time-dependent Hermi-
tian invariant operator I (z). It is clear that J (¢ ) satisfies the
equation

dl  adl QI

i a7 PHI=0 @
and /" = I. Further, the eigenfunctions ¢, (x,) of (¢ ) are
assumed to form a complete orthonormal set corresponding
to the eigenvalue A. For simplicity it is assumed that the
eigenstates of / (¢ ) are nondegenerate so that the eigenvalue A
is the only quantum number required to describe the system.
This certainly applies for the case studied in this paper. Thus

I, (x,t) = Ad, (x,t), (8)
@5,8,)=235,. ©)

The solutions ¢, (x,t ) of the time-dependent Schrodinger
equation are related to ¢, (x,¢ ) by a relation’

bxr)=e"",, (10)
where a; obeys an equation
da,

a (é/l’ig —ﬁ,¢x>- (1

Since each of ¢, satisfies the Schrédinger equation, the gen-
eral solution may be written as

Yont) = FC e, (x), (12)
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C, being the time-dependent coeflicients given by

C, =g ¥). (13)
In order to obtain a relation between the propagator and ¢,
we see that Eq. (12) for ¢ ” > ¢’ can be expressed as

YO =3 Cae™ g ()
A
- z ei(L(I')f¢ ;k(x',t ;) dx:eiat(f")¢l (x”,t I/)

— [[zerer 6 emp e

p:

X(x',t ") dx’, (14)
where in the second step on the left Eq. (13) has been used.
Comparing Eq. (14) with the definition of the propagator,
viz.,

vy = [ KRGt w s de, 10, (19)
it follows that

K(x",t u; x’,t r) — 2 ei{a,(r”) 7(1/.(!')}(25 ;k(xl,t I)¢A (x",t u)’
A
(16)

which is a generalization of the usual expansion formula for
time-independent Hamiltonians given by Feynman and
Hibbs.?

3. DERIVATION OF THE INVARIANT OPERATOR AND
WAVEFUNCTIONS OF THE SCHRODINGER EQUATION

The Hermitian invariant operator i (¢) for the system
characterized by the Hamiltonian (2") is assumed to have the
form

1) =[a)x® + 6@)xp} , +ct)p?
+dx+h(t)p + k()] (17

where a, b, ¢, d, h, and k are real functions of time, {x,p}. is
the conventional anticommutator, and the numerical multi-
plicative factor has been chosen for convenience. From Egs.
(7), (17), and the usual commutation relation [x,p] = i one
obtains the following set of equations:

d — 2bo?e” =0, (18)
b+ae " — cwle =0, (19
¢+ 2be =0, (20)
d+ Qf b — hw’)e" =0, (21)
h+de ' 4 2cfe’ =0, (22)
k + hfe! =0, (23)

The set of first order differential equations (18)~(23) can be
solved readily to yield the functions a, b, ¢, d, h, and k using
which the invariant I (¢) can be written as

f(t): i[(i er:/2+ V)2
2\p

+e””/2pp—e"’/2(/5— 7/Tp)x— U], (24)

where p obeys the equation
pt+awp—p =0 (25)
and £2,U, and V are defined as
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2%) = w*(t) — y/4, (26)

U@)= Jﬂ G () cose (r,t) dr, 27

V)= f G (1) sing (7.t ) dr. (28)
The functions &(7') and ¢ (,t) are defined as

G (1) =p(r) f(r) "™, (29

¢ (70) = p(7) — p(2), (30)
where u(2) is related to p by a relation

pu=1. €)))

Any particular solution of Eq. (25) may be used to construct
1(t). However, in this paper we assume that at time t = ¢, the
wavefunction must reduce to the one corresponding to the

free damped oscillator with constant frequency @, . Conse-
quently, Eq. (25) must be solved with the initial conditions

plte) = 1/V 2y (1) =0, (32)
with

N%=ow)— /4

Next, we define a pair of time dependent canonical low-
ering and raising operators a and a ' defined by

1 1
d= —=P+iQ), d'=—4P-iQ), (33)
V2 V2
where
e;/t/z
P: + V)
p
0=e " ppt(p+ L)erx—v. (34)

[t may be easily verified that 4@ and 4 ' satisfy the commuta-
tion relation

[6,6") =aa" —d'a =1, (3%
which implies that the operator 4 'd is a number operator

with nonnegative integer eigenvalues. The invariant opera-
tor I(¢) of Eq. (24) can now be written as

I=(@a"a+4). (36)
Equation (36) implies that the normalized eigenstates ¢, of I
are same as normalized eigenstates @, of d '@ defined by

at6d, = nd,, n=012. (37)

The relative phases of the eigenstates ¢, may be fixed by
demanding that the usual relations

a¢ll = vn¢n — 1 df¢n = \/n + 1¢n + 1 (38)
are satisfied. The eigenvalue spectrum of Tis clearly given by
A, =n+14%), n=012,.. 39)

In order to obtain ¢, explicitly, one first obtain ¢, (x,? ) from
the relation

Upon substituting the explicit value of & from Eq. (33), one
obtains a first order differential equation for ¢ which when
solved yields
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yt/4 :
bolx,t) = T exp(—iP?) exp(% R ), 41)
where
R= [xze?”/z(g —%) +£e7’/2x}. (42)
p p

The eigenstate ¢, can be obtained by applying the operator
a T successively to ¢, . Thus
aty"
b = L1 gy, 43)
\/

n!

which finally gives

¢(xt)=_*e7q/_4—exp[‘ipz+LR}
[ANA] [(ﬁp)l/Z_znn!]l/Z 2 2
><H,,(1 e V), (44)
p

where H, (x) is the usual Hermite polynomial of order n.
When y = 0 and f(¢) = O, these reduce to the eigenstates of
the invariant operator corresponding to the free time depen-
dent oscillator discussed in 1.

In order to obtain the solutions ¢, (x,¢ ) of Schrodinger
equation, one has to compute the phase «,, () from the
equation

d;" — (8,12 ~A14,). 45)

After an explicit evaluation of the matrix element on the
right of Eq. (45) we obtain

d 1 2 2
a"____ (n+2) _ (U V) (46)
dt p’ 2p?
Equation (46) may now be integrated to yield
a,(t)y= —(n+3put)—F@), (47)
where the phase at 1 = 7, has been fixed as
a,(ty) = — (n + 3) ulty) (48)
and F (¢ ) is defined as
¢ 2N 2
F(t)= f W@ -Vl ,, (49)
% 2p7(1)

Finally the normalized wavefunctions ¢, ,, of the Schré-
dinger equation are given by
¥, (xt) =", (x.1)

i, (1) €
= ¢ ——— ————— &
[2nn!(7rp)l/2] 172

yt/4

1 i
X ——P2+~—R>
p( 2 2

xH, (i e 4 V), (50)
p
where Pand R are defined in Egs. (34) and (42), respectively.
Several limiting cases follow from this general expression.
First of all note that when ¢ = ¢,, this wavefunction reduces
to the form given by Bopp.”* Secondly, when the dissipative
term is absent (¥ = 0), Eq. (50) yields the wavefunction de-
rived by Goovaerts? by a path integral approach. Finally,
when ¥ = 0 and f(¢) = 0, Eq. (50) reduces to the wavefunc-
tion for the free oscillator with time-dependent frequency
obtained in Ref. 1.
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It may be remarked here that such closed form of the
oscillator wavefunction may be of practical interest in the
semiclassical treatment of molecular scattering® and in the
phenomenological theory of lasers.** For practical applica-
tions, one has to obtain the unknown function p(t ). This can
be obtained by a numerical integration of the nonlinear dif-
ferential equation (25) for a given frequency function w(t)
and the damping coefficient ¥ with appropriate initial condi-
tions. Knowing p(t), integration of Eq. (31) provides the
other unknown function (¢ ) while the function U (¢) and
V (¢ ) may be obtained from their defining Eqs. (27) and (28)
once the perturbative force f(¢) is specified.

It may also be added here that the above wavefunction
has essentially the form

6, (x,0) = A4,(t) exp{ — 3[xB (1) — C()]*)

XH,(xD(t)+ E(t)) &Y
and once this form is assumed, the unknown functions 4, , B,
C, D, and E may be determined by substituting Eq. (51) in
the Schrodinger equation (3) and subsequently solving the
five coupled differential equations. Alternatively, the meth-
od of generating function described in Ref. 11, which again
presupposes the form of the generating function, may be
used to arrive at the wavefunction ¥, (x,¢ ). However, the
method of explicitly time-dependent invariants described in
the preceding sections and the path integral approach de-
scribed in the subsequent section do not require any ad hoc
assumptions about the nature of the wavefunction to be
obtained.

4. FEYNMAN PROPAGATOR

The propagator defined by the path integral of Eq. (4)
may be expressed in the form of a multiple Riemann integral
K(x”,t II; x,’t l)
= lim 4,

N »x
N N

Xff exp[[ s Sk(xk,x,\._l,e)] II 4. (52)
A=1 k=1

where x, = x(¢, ) and 4, is the normalization in the N th
approximation. The action S, (x,,x, _,,€) over an infinitesi-
mally small time interval 1, — ¢, | = € may be approxi-
mated by

I/\
S, = f L di~¢eL

|1 €
:e,"[_('xk—xk—l)z_ — Wi X} — €fi X |- (53)
2e 2

The normalization factor 4, essentially corresponds to
the free particle normalization including the dissipative fac-
tor e " and is given by

A= I ( e’ )1/2. (54)

K 2irie

The integrations involved in Eq. (52) can be performed
by using the formula

fx explilax? — (@ + b+ c)x]) dx

i\ 1/2 2 2 2
:(l—ﬂ') exp[—i—*(a +o +¢)
a 4a
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X exp ;I(ab + be + ca) (55)
2a

recursively. Using Eq. (53) and the definitions
Bi.=e"/e, g =€Byf
a, = 5[(Bi + By, 1) — Buwi€’], (56)

the final result of these (n — 1) integrations can be expressed
as

K" t"; x't)Y= lim (ay/2m)'"?
N—oo

Xexp(ipy x'? + ign x"* — iay x'x")

Xexp[iby x" +cyx" —ry)], (57)
where
ay=BnEn. 1 (58)
N_1 £

=21 g 0E ) (59)
2 = By

o= (1 - ), (60)
2 §N-2
N-1

bN — Z nké—k ﬂ] , (61)
k=1 Bk+1

g = Tibno 62)

§N~2

N1 2

o= S e (63)
k=1 2Bk+l§kvl

The quantities (¢, ,7, ) are further defined by

K .

=11 (21 w1 (64)
j=h\ 26,

M =8k + Bk _1/20 1, =g, (64")

O =a,—B1/460, , k32, 0,—a, (65)

The evaluation of the coefficients defined through Egs. (58)—
(63) in the limit N— oo is the main issue in obtaining the
analytical form of the propagator. Defining two new varia-
bles g, and A, by the relation

g, 20,
== (66)
9k Bi iy
Eq. (65) is cast in the form
g, 1=l —wiez‘*'fiﬂ)qk_em "qi 1 (67)
which in the limit é—0 reduces to the differential equation
¢+ oXt)g +yg=0. (68)
Since from Eq. (66)
20
A= 2 s e, (69)
q, B,
it follows from Eq. (67) (by setting k equal to 1) that
go=4q(")=0, (70)

which provides one of the initial condition for the solution of
Eq. (68). A solution of Eq. (68) satisfying the condition (70)
is given by
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gt) =s(t) e "sin[v(r) — ()], (1
where the functions obey the equations

§+02%t)s—s =0, (72)

vt =1, (73)
with

N2 =0 — /4.

Comparing these equations with Egs. (25) and (34) the func-
tions s(¢ ) and v(¢ ) may be identified with p(¢) and ().
Moreover, Eq. (71) provides a physical interpretation for
p(t) and u(r) as quantities related to the amplitude and the
phase of a classical damped oscillator with a real time-depen-
dent frequency. We shall therefore use the symbols p and i
in place of s and v respectively hereafter.

The limits of all coefficients (58)—(63) have been ob-
tained in the Appendix A. It is shown there that

lim ay = -,—l;cscqﬁ ("), 74
Novoe oo
lim py = L[———COW € _ 5e”‘], (75)
N oo 2 0_12 0_/
" I oyt

lim g, = i[covﬁ(t t) o e, ], (76)
N oo 2 0!12 0"

" o4t t”
lim b, = M—’Qer"ﬂj G(t)sing (¢ "0)dr, (77)
N oo o ¢

n

N rex a

lim cy = 8D pnn J G(t)sing (e Y dr, (T8)

lim ry =cscd(t",t")

N oo

Xf j G ()G (s) sing (t",t) sing (s,t) ds dt,
t t (79)
where the function G (¢ ) is the same defined in Eq. (29). Sub-

stituting these limits in the Eq. (57) for the propagator, one
obtains the following closed form:

K(x",t " x',t ’)
. 1
" [2mio’c" sing (¢ " 1))
Xexp[i(a”a"e" y? — o'd'e” y'?)]
X expilicscd (1 ", WG +y P cosd (t",t") — 2¥'y" ]

+y"e” "/Zf G (t)sing (t,t") dt

+y‘eY"/2J G (t)sing (t",t) dt

_ 2{ f "G (1) G6)sind (5.) sind ¢ ") ds di ) (80)

with

(80)
It may be noted that when ¥ = 0 and w(¢ ) is a real positive
constant @, the solution of Eq. (25) yields p(¢ ) = 1(w, ) and
by Eq. (34) u(t ) = wy t. In this case, the propagator of Eq.
(80) reduces to the expression given by Feynman and Hibbs?
for the forced oscillator. When the perturbative force is ab-
sent [ f(¢) = 0] and (¢ ) is a constant w, , Eq. (80) yields the

o=pe- y=x/o.
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propagator for a free damped oscillator evaluated by Papa-
dopoulos.” Finally, the expression of Ref. 12 is also repro-
duced when y and f(¢) are set equal to zero.

5. EXPANSION OF THE PROPAGATOR

It will now be shown that the propagator of Eq. (59)
admits expansion in the form given by Eq. (6) or Eq. (16).
First, the propagator is cast in an appropriate form using the
following results derived in Appendix B:

_r
sing (t",t")
=U"+{cotg(t" 4N V" — {escd (¢ ", 1N} V', (81)

f’ ” G(t) sing (1,t") dt

1 :
- G(t) sing (¢t ",t)dt
sing (¢ ",t") f () sing (t%4)
= —U'+V'cotg(t",t)—V"cscd(t"t), (82)
1

mﬁ J: G (1) G(s)sing (s,t ) sing (¢t ",t ) ds dt

= 37+ V")cotg(t",t')

+ V'V csco(t"t)+(F" —F"), (83)
where the functions U, ¥, and F have been defined by Eqgs.
(27), (28) and (49) and the prime and double prime denote
the quantities evaluated at time ¢ “ and ¢ ” respectively. With
the help of these results and after suitable rearrangement of
terms, the propagator of Eq. (80) may be rewritten as

K(x”,t n; xr,z l)
1

 (mo'0")?

Xexp[%i(a"d" ew ”yul _ Utd,leyr'yd)]
e i

XexpLUU"Y" = U] s

Xexp[ 1 __elm X7P4+X?-2X'X"e )
Xexp{ X "2 + X))} exp[ —i(F" — F"], (84)
where ¢ = ¢ (¢”,t") and
X@)=y+ V@) (85)

Using Mehler’s formula,*
exp[ — (x* 4+ y* — 2xpz)/(1 — 2)1/(1 — %)
=exp[ — (x> + y?)] i %Hn x)H,(), (86)
n=20 n!

and, lettingz = e ', x = x”, y = x" and noting that
& =pu(t")y —u(t"), it is easy to see that the expansion of Eq.

(6) or that of Eq. (16) follows with

U (xt) = e b (x,0), (87)
where

a,xt)= —(n+Hu@) - F@) (88)
and

1

#,(x,t) = — exp[Li(e"'ooy® + Uy)]
7r”4\/0'
Xexp( — 1X DY H(X). (89)
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With the help of the defining equation for X it is easily veri-
fied that &, (x,t) of Eq. (89) are the same as the eigenfunc-
tions of 7 (¢ ) obtained in Eq. (44) and that @, (¢ ) of Eq. (88)
coincide with the phases obtained earlier in Eq. (47) of Sec. 2.
This completes the derivation of the wavefunction from the
Feynman propagator.

6. CONCLUSIONS

Two alternative approaches were considered to solve
the problem of a quantal oscillator with damping and time-
dependent frequency acted on by a time-dependent pertur-
bative force. In the first approach, an explicitly time-depen-
dent invariant Hermitian operator and its eigenvalues and
eigenfunctions were obtained. These were used along with
appropriate phase factors to construct the wavefunctions of
the Schrodinger equation in exact closed form. The second
approach involved a path integration of the classical Lagran-
gian yielding an exact Feynman propagator. The wavefunc-
tions were then obtained by an expansion of the propagator.
It was found that the wavefunctions and the propagator de-
pend only on a single function p(¢) related to the amplitude
of the classical damped oscillator with a time dependent fre-
quency. The function p(¢) in turn may, in practical situa-
tions, be obtained from a numerical integration of a second
order nonlinear differential equation under appropriate set
of initial conditions.

APPENDIX A

In this appendix limits of Egs. (58)—(63) as N-» have
been evaluated.

In order to obtain the desired limits, all the coefficients
must be expressed in terms of the ratio g;/q, . This may be
done by noting (as ¢, = 0)

€40

X
= 1/A)=q,/qy, | = ———— +0(&)
& jU1( ,) q1/qx 51 04, + €4,
= o (A1)
g, M€)~ €4,(t")/q,
and
Y
P A L L Zgjqf/qA
9« i=1
€ Ji'+e q;

Substitution of these values in Egs. (58)—-(63) gives us the
desired result. It is then easy to evaluate limits. First

. . B : : .
lim a4, = lim 9 Jim e Yeq(t)/eq(t ")
Nos oo N Gn € -0
P+ 1”) "o
e ” [ t,t
= ————csch(t",t)= c¢’( — ), (A3)
PP o'o
where
¢ (t ”,t /) :#(t H) —ﬂ(t /)
and
U:peiﬁﬂ/z, U/ :0_([ l), U// =0_(t u).
Next,
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: B y B 7
lim p, = lim 7’(1 -3 = '

N—oo Nomoo K Be i @ik

. ey(z’+€)
= lim 1—¢€

e~0  2€
X f e gt/ g () dt ) . (A4)
t' +€

Substituting the value of g and ¢ explicitly from Eq. (66) and
noting that ip 2 = 1, the integration involved in the evalua-
tion of the limit can be easily performed to yield

llm—(l + Y€ + )

e—0

X {1+ 6[‘11 cotd (¢ ",t") — ' cot(t’ + €,t )]}

yer' eV’/ ’ .
1113 > —2— [1' cote (2",t")
" sing (1" + €,t') — e’ cos (t' + €,.") .
esing (¢’ + €t
The latter limit exists and is equal tou'/2u’ = — p'/p’ as
can be verified by expanding ¢ (¢’ + €,¢ ') up to second order
in €. Thus we obtain

(A5)

ve' 3
lim p, = £ + f’—(ﬂ cot (1",1") — p—)
N—oo 2 2 P
yt' o7
=2 [Lz cote (¢ ",z')—(”_, - li)]
2 lp P 2
_i[cotq&(z ") _ eV"d’] (A6)
2 o’ o I
Next,
lim g, = lim &V—(l — qN])
N oo Now 2 gy

Il
=)
|3
TN
I
oy

4 —eq'N)= e’ 4@t")
qn 2 q(t")

_ [ cotg (1) (p_ _ 1)]
p!l pl/ 2

2
L[esesn o g
2 0.n2 a,” :
Now
. Ted
Iim b, =p —_—
Noww ‘zﬁk+lqk
" T — ') gt
= lim gr L€ eq)
eOJrye € q(7)
X f 804E) 4 (A7)
t'+ e q(T)

Substituting explicitly the values of g(s) from Eq. (51), g(¢)
from Eq. (66) and then carrying out a partial integration
w.r.t. 7 one obtains by noting

J- 4i(7) csc’¢ (r,t ) dr = — cotd (r,t),

LAPEAVN % 5]
lim b, = csco(t”,t")e
N—oo 0"

X f G(t) sing (t",) dt. (A8)
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The next limit to be evaluated is

im ¢y = lim 57y 9y /gy

N »w Nosoc
T J ' 8(9)9()gn
{

N €
€0

"2 .

_ e’ esehp (2,1)

»”

o
X fl G(t) sing (t",t)dr (A9)

and lastly

ds
“+e Iy _ 19N

N-1 2
hm ry = lim _ MG
»x v”“A—lﬂzﬁk+1‘1k+1
—lim L [ @@e
e -0 g ti € q(T+€)
J f 86)86NN) 4o
q*(7)

Substituting explicitly the values of ¢, ¢', and g from Eqs.
(66) and (51), we get

J’ Cou(r)dr

sin’g (r,t)

X J JT eysf(s)e?’s’f(s;) q(s) q(s’) ds ds"

Partially integrating once w.r.t. 7 and rearranging the terms,
we get

lim r, =
N-woe

lim ry =cscd (¢ ",t")
Nowx

XJ J- G(5)G (t)sing (1 ",t) ds dt,
which is the result of Eq. (63).

(A10)

APPENDIX B

In this appendix Eqgs. (76)—(78) have been derived.
Consider the integral

J‘! G () sing (r,t)dr

s

— f G (1) sing (r,t) dr + fl G (7) sing (r,t) dr.
. ¥ (B1)
Now, since from the definition of
(1) =8 (1,5) + d(s1) (B2)
it follows that

sing (7, } = sing (7,5) cosed (s,¢)
+ cos¢ (7,8) sing (s, ). (B3)

Using Eq. (B3) in the first term on the right-hand side of Eq.
(Bl) and dividing throughout by sing (z,5), one obtains

sm¢ (t,s) J G (1) sing (7.t ) dr

= —V(s)cotg (t,5) + V(t)csch (1,5) + U(s). (B4
Thus Eq. (76) is obtained if one sets 1 =t ', s = ¢ ” while Eq.
(77 results when ¢ =1¢",s = t'is setin Eq. (B4). Next con-
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sider the double integral

t"
= J- J- It " s,t")dsdt
o Jr

with
I=G()YG(s)singd (s,t") sing (¢ ",1). (B5)

After breaking the range of integration at r = ¢, one may
write

J=J+J,+ I+ Jss (B6)

where

[ IS
J‘:J Jldsdt, Jzz—f J Idsdr,
o Y, ty i,
et t’ ot
JJ:J.[Idsdt, J, = ~Jf I dsdt, (B7)
[ 1, v,

Replacing sing (s,t ") by
sing (s,t ") = sing (s,t “) cosd (¢ “,t ")
+ cos (s,t ") sing (¢ ",t "),
1t is easy to obtain
Jo= — 4V cosg(t",t") +sing(t"t)J,(t"), (B8)

where
T
Ji(n) = j J G () G (s) cosd (s,7) sing (7,1 ) ds dt. (B9)
Iy,
To simplify J, (), we further differentiate both sides of Eq.
(B9) w.r.t. 7 to obtain

(D U — VD)

= B10
dr 20%(7) (B10)

Since by definition J, (1,) = 0, Eq. (B10) on integration
yields

— 1" 2 2
T = J ((_]-—V—) dr=F(t"). (B11)
o 2p?
Substituting Eq. (B11) in Eq. (B8), one gets
Jy= — V" cos¢(t"t)+ F"sing(¢"t).  (BI2)
Next, it is straightforward to show that
L=V (B13)
while J, and J, may be simplified after substituting
sing (1 ",t) =sing (1 ",t) cosg (1t ",t)
+ cosg (¢, ") sing (¢',t) (B14)
in the definition of J, and J, to obtain
J,=V'U'sing(t",t")— V7 cosg(t",t") (B15)
while
J3 — ”,t I)__:i;(l I) Sln¢(l ”,l,), (B16)
where
S = f f G (1) G (s) sing (s,7) cos (1,1 yds dt.  (BI7)
0 Je,
Differentiating J, (r) w.r.t. 7, we get
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ﬂ =GV + L(U2 - V).
dr 20?

Using easily verified results
U=G+V/? V= —-U/?
Eq. (B18) is cast in the form
dJ,
o doryy— 1L (B20)
dr  dt 203U~ V?)
which on integration over (¢,,¢ ') yields
J()y=UV' +F' (B21)
Substituting values J,, J,, J;, and J, from Egs. (B12),
(B13), (B15), (B16), and Eq. (B21) in Eq. (B6) and then
dividing it throughout by siné (¢ ",z ), we obtain the result of
Eq. (78).
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Explicit solution of the wave equation for arbitrary power potentials with
application to charmonium spectroscopy

H. J. W. Miiller-Kirsten, G. E. Hite, and S. K. Bose?
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We present an explicit and almost complete series solution of the Schrodinger equation for an
arbitrary quark-confining power potential with or without a weak Coulomb component or other
corrections. In particular, we derive two pairs of high-energy asymptotic expansions of the bound-
state eigenfunctions together with a corresponding expansion of the eigenvalue determined by the
secular equation. We also obtain a pair of uniformly convergent expansions and discuss other
types of solutions. Various properties of the solutions and eigenvalues are examined including the
scattering problem of the cutoff potential and the behavior of Regge trajectories. Finally, the
relevance of these investigations to the spectroscopy of heavy quark composites is discussed. In
particular, we derive approximate expressions for leptonic decay rates. Examples are given to
demonstrate the usefulness of these results for theoretical discussion and as alternatives for
numerical integration techniques. A subsequent paper will deal with the normalization of the
bound-state wavefunctions and the corresponding derivation of explicit series expressions for

certain decay rates.

1. INTRODUCTION

Over the last few years numerous attempts have been
undertaken in order to understand the level spacing and the
decay rates of heavy mesonic states in the ¢ and 7 regions
(see, for example, Refs. 1-5). Most of these attempts start
from a nonrelativistic consideration of the bound-state prob-
lem for a vector (or scalar) interaction and employ numeri-
cal techniques for the integration of the relevant wave equa-
tion. Effects of spin—orbit coupling, tensor forces, and
hyperfine structure are considered as additional corrections.
Although the gross features of the spectra are recovered in
most of these attempts (a well known difficulty is the prob-
lem of pseudoscalar states), a detailed comparison® of these
attempts shows that one or the other of the parameters in-
volved can differ by as much as 50% in different models.
such a difference in the values of parameters which contrib-
ute effects of second or higher order may not be highly sig-
nificant at the present stage of knowledge, but it indicates a
certain range of uncertainty in their values. Although nu-
merical methods seem indispensable in this type of work, it
would be reassuring to have at one’s disposal theoretical for-
mulas for extracting at least good approximations for the
level spacings, leptonic decay rates, etc., since these would
also permit a better understanding of the relative magni-
tudes of various contributing effects. This is one reason why
we undertake in the following a detailed perturbation theo-
retical solution of the wave equation for the superposition of
a quark confining power potential and a short-range gluon
exchange Coulomb component.

There are also other motivations for undertaking this
type of work (quite apart from its interest in quantum me-
chanics and mathematical physics). The discovery’ of the ¥’
states at Fermilab in the mass spectrum of muon pairs pro-

“'A.v. Humboldt foundation fellow on leave from the University of Gor-
akhpur, Gorakhpur, India.
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duced in the bombardment of nuclei by high-energy protons
has raised the question whether the linear potential is indeed
the proper or most convenient phenomenological ansatz for
the quark confining interaction. In fact, it is difficult to fit all
the essential data in both the 3 and 7 regions with one and
the same linear potential. Quigg and Rosner® therefore began
an investigation of the spectroscopy resulting from a loga-
rithmic potential or even an arbitrary power potential.’
These investigations are useful not only for singling out the
approximate form of the potential (which, of course, will
eventually have to be derived from field theory), but can also
be a valuable aid in exploring the spectroscopy of numerous
other states which may be discovered by the new generation
of accelerators. In the following, however, we consider appli-
cations only in the field of charmonium spectroscopy.

We begin by considering in detail the eigenvalue prob-
lem defined by the Schrodinger equation for a superposition
of Coulomb and arbitrary quark confining potentials. We
then derive various types of solutions for the wave functions
as well as explicit expansions for the energy eigenvalues and
Regge trajectories. Our methods of solution are very general
and parallel the methods used for solving the wave equation
for a logarithmic potential'® or the methods of solution of
more complicated standard differential equations such as
the Mathieu'' or spheroidal wave equation.’ In Secs. 2 and 3
we derive two pairs of high energy asymptotic expansions for
the discrete eigenfunctions together with the corresponding
asymptotic expansion for the eigenvalues. In Sec. 4 we derive
a pair of uniformly convergent expansions for the solutions
and discuss their relevance for the scattering problem of the
cutoff confinement potential. In Sec. 5, then, we investigate
the physical implications of the asymptotic expansions of the
energy eigenvalues and Regge trajectories. In particular, we
extend our considerations by incorporating spin-dependent
corrections (spin—orbit, tensor, spin—spin) and calculate the
splitting of the *P; levels of charmonium. Finally, we calcu-
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late the S-wave bound-state wave function at the origin and
leptonic decay rates. In Sec. 6 we make some concluding
remarks.

2. A FIRST PAIR OF ASYMPTOTIC EIGENSOLUTIONS

We consider the Schrodinger equation for an un-
screened power potential gr* which is modified by the addi-
tion of a Coulomb component, i.e.,

Vin=gr' —g/r+ Vo (1)
whereA>1andg, >0, and V, is a constant. Separating off the
motion of the center of mass in the usual way, we obtain the
radial wave equation for the relative motion of the two parti-
cles of masses m,, m,, i.e.,

49, 2—”{5— 1+ OF V(r)]zﬁ:O, )
dr # 2urt

where, as usual, ¥ = (1/9)¥(r)P 7" (cosd e ™,

@ = mm,/(m, 4+ m,) is the reduced mass of the two parti-

cles and r is their separation.
Inserting the potential, we have the equation

da’y il % Mo 2b
d,z+(a Aot ﬁ)w ’ (2b)

where we have set

@ = 2(E — V)1, B=2ug,/f

§=2ugy#, y=I10+D=L’-1 €)
Next we set
r=e’ (—ow<z<®) )

Setting also

w — €Z/2¢, (5)
we obtain our basic equation
2
99 L [—L+v@]s=0, ©)
dz’
where
WD) =a e — Bl 45 %

Our next step is to find that value of z, say z,, for which v(z)
becomes maximal. In the vicinity of this maximum,

v(z) — L ? can become positive and the solutions therefore
oscillatory as required for the existence of eigenvalues. Thus,
setting (dv/dz), . , = 0 and soving for z,, we find

5 A + &
—lnp+1 (1 -
=AU et 2Q2apA )?
A+ DA +2)5 ) 8
3Qapl ’ )
where
- 2 1/4
”‘{(zw)ﬂJ ©)
fora > 0,5>0.

Expanding v(z) in the neighborhood of the maximum at
2o, We Obtain

@) = v+ § ET o), (10)

=
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where, for i = 0,1,2,-,

vz =2a |2 — Q2 +A)" 1~(1 +
2apA

A+ DA + 28 _ )] e
3Q2apl )’ '

A+ D&
22apA )

(i
For i = 0 this expression is positive, for { = 1 it is zero, and
for i > 1 it is negative [as required for a maximum of v(z) at
z = z, for a > 0]. We now set

h=1[—26M()]",

ie,
I 5 \2
Bt = dad 2(1+/1 3~+( ) ] 12
P “ + )2ap/1 2ap + (12)
8
h?=2ai)"”? [1+ A+3)——r
(ad)”p ( )4ap/1
G4+ DA+H( S )+] (13)
2 \4ap/1
and change the independent variable in Eq. (6) to

o =h(z—z).

The equation then becomes

d2¢+( -L2+v(zo)~w_2)¢

dew? h? 4
o (D, i
- (L.(ﬂ) 'Y (14)
3\ 208(z)/ th 2
where
(0
v (ZO)zi[(.'Z-f-/l)"‘l—Z';l]— I}
vz A A (apl)
XI2+AY " 4+ 4 =214+ 1))
>
+ 5 +2)
1 2api )*

X[QR+A)Y " "+A =274+ D]+ (15
In particular, we have, for / = 3,4,

vP(z) — (44— A+ 1)
e 2aph

+ Mﬁ + o

Qapi )
and
v z,) 5(A + DA +95)
— L =A%+ 6l 1y AT
vD(z,) @ +64+12) 2apA
2
L FA+DA+EA+S |

(2apA Y

In the following (except for Sec. 4) we assume that the
parameter 4 is large (i.e., 4 *> 1), so that 1/4 is the perturba-
tion parameter of our expansions; the latter will therefore be
arranged in descending powers of 4. It will be seen, more-
over, that our expansions are asymptotic in 4 and are there-
fore ideally suited for large but finite values of 4,so that the
least term of the expansion comes rather late and is corre-
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spondingly small. It is well known that asymptotic expan-
sions are useful even for moderately large values of the pa-
rameter which is assumed to be large, and using modern
methods for handling such expansions, their usefulness can
be extended into regions of even smaller values of it. As was
pointed out previously,'® the dominant terms of our expan-
sions correspond to those provided by the ususal WKB ap-
proximation. For the parameters used below, / * is larger
than 4.

For large values of 4, the right-hand side of Eq. (14)
can—to a first approximation—be neglected. The corre-
sponding behavior of the “eigenvalues”

[ — L+ v(zp)1/h?

can then be determined by comparing the equation with the
equation of parabolic cylinder functions. The solutions are
square integrable only if

[ —L?+v(zp)1/h? = 1g,

where ¢ is an odd integer, i.e., 2n + 1,n = 0,1,2,..- (provided
the wave function is required to vanish at infinity; otherwise
it is only approximately an odd integer, as we explain later in
Sec. 4). For the complete solution we set

[ —L>4+v(z))1/h>=4q + 4 /h. (16)

The quantity 4 in Eq. (16) remains to be determined. We
proceed as follows: Substituting Eq. (16) into (14), we have
an equation which can be written

= [ V(z,) o'
&, 17
Q¢ ;( U(Z)(z )) l"hlf? ( )
where
d? 1
9 =2 — 2 18
/ dw?* 7 ?a) (18)

Equation (17) is now in a form suitable for the applica-
tion of our perturbation method. To a first approximation,
¢ = ¢ °'issimply a parabolic cylinder function D, _,,,, (@),
ie.,

¢ @ = =¢,=Dy ) ,(0), 9q¢q =0. (19)
We have
_ i 3—q 3 o
D =20~ I “’/"“I/(—, _— —-—),
(g — 1)/2(‘0) 4 2 2

where ¥ is a confluent hypergeometric function. The func-
tion ¢, is well known to obey the recurrence formula

wp,=(q.9+2)d, >+ (9.9 —Dd,_» (20)
where
@9+2)=1 (gg9-2)=4i@g—-D. D
For higher powers we have
} —2i
wl¢q = z S,(q,j)¢q +J (22)
j=2i

and a recurrence relation can be written down for the coeffi-
cients S;. The first approximation ¢ = ¢ ‘°’ then leaves un-
compensated terms amounting to

24 & ( v(zo) ) ] 4.@)

h S\ vz ki
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24
=44, - My (@), (23)
h i=3 h j = 20
where we have set
= Um(zo) 1
S(g, /) = ———=S{q,)). 24
@)= = e 7 @) 24
We rewrite Eq. (23) in the form
‘()/?570) = . l¢q + j((z)), (25)
i=3
where
[9.9]; =24 — S3(4,0),
and for j==0
(9.9 +j1;= — 5. ) (26)

and for /> 3, — 2i< j<2,

(9.9 +il. = —S:@. )
Since 7, ;=% ,—j L B, ;=Jb,  patermpud, in
ﬁ(qo’ can be removed by adding to ¢ '°’ the contribution
ud, . ;/jexcept, of course, when j = 0. Thus, the next order
contribution of ¢ becomes

o_ & | [qq+/]
¢ ,’;3 hi? Z J qH( ©)

J=2i
J£0
In its turn this contribution leaves uncompensated

, = 1 ilag+7li o
af= 5 s 3 A,
=S J‘:"J[

J#0
and yields the next contribution of ¢:

, o 1 <2 g9 +Jjl;, =
4@ = :
1;23/1'72_,-:22,- J gzh"z
70
< lg+ig+i+71s
X — byijry
7 ;Zzi' 7+ v
J 70
Proceeding in this we obtain the solution

¢=¢(O)_|_¢(l)+¢(2)+

which is an asymptotic expansion in descending powers of 4,
valid for

(27)

(28)

29

O(1/h),

i.e., around z = z,. However, the sum of contributions

(30)

Z—2Zo=

$ ' + ¢ ‘V-isasolution only if the sum of the termsin é, in
R, D, (left unaccounted for so far) is set equal to zero.
Thus,
s 1
0= .
Pt ;1 B2
< 99 +J]
x 3 2 slg +ig1, +
J=2r =
or J#0
1 1 < lg.g+/1. .
= —lggql; + —;'[q,q]4+ S g +j4l;
h h =6 J
770
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+o(7117). 31

This is the equation from which 4 and hence the eigenvalues
are determined. The expansion on the right-hand side is
much simpler than may appear on first sight because many
terms are zero, e.g., :S':(q,O), Sig, + 1).

Thus,
244 = 5400 - 5065+ 6.~ 6

+15,(g. — 6)5(g — 6,6) — 258 (g + 2, — 2)
+5(a.— 25— 22|+ 01/kY

_ [ @ +1) @) (1582 + 7 u“’(zo))z]

24 vP(z) 2437\ v(z,)
+0(1/h?)
24 2apA
+ A+ DA +2A+9) " ) _ (15¢+7
(Qapr ) 2432
x((/l+4)— SA+1)  FA+DA+2)
2apl Qapa )

2 1
+ "‘) + o ( F).
Using Egs. (3), (15), and (16), this gives us
(1 + 3 = v(z) — 3gh* — 4h

=( Aap? | A7+3A—1D
(A +2) AA+2)
A +51=38" ) _igh?
44 + DA %a
B G+ 1)((/{2—{—64—% 12) — M
25 2apA
L B DA+ DAL )
(2apd
(15¢° +7) _ 4+
+ 5.3 ((/1 +4 2apl
2 (o]
R LRI .. (32)
Qapl) h?

In the case of the pure power potential (& = 0), one more
term of this expansion is known yielding [the coefficient of
the term of O (1/h?) is the contribution of Hite and Bose]

h4
I+4P = —"— 1an? An
( 2) 4(2—{—/1) 39
4
-t n— o + 1)

S §

a2+ T Ey

X (A2 + 64 +12) — (15¢* + T)(A + 4)*]
g

28h 2

— 7200c,4c3 + 5640c}g” + 8( — 200c,

+

[( — 320cs + 2240csc; + 544c;
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+ 760csc;y + 268¢2 — 1836¢,c5 + 1155¢3)) — -,
(33a)

where

1 ) .

;= —[Q+AY "' =2071].
A (i) ( )

The quality of the expansion (33a) is (perhaps) best illustrat-
ed by the expansion for A = 1 (the linear potential):

h* 517 + 1 g
[+5)=——1qh* + +
e T 72 256k

X (— 19.851862¢" + 0.29640) + O(hL) (33b)

3

It should be noted that this expansion is invariant under the
joint interchange g— — gand 4 > — h * which converts one
solution into another.

It is clear that the approximation provided by the first
four terms of this expansion is best for large values of 4 and
small ¢. In Sec. 5 we will work with this approximation. Of
course, more terms can be estimated without explicit calcu-
lation (we make use of this in the calculation of Regge trajec-
tories). We observe finally that consecutive terms alternate
in sign, thus indicating the Borel summability of the
expansion.”

We have thus obtained a large-A asymptotic expansion
of the eigenfunctions of the Schrodinger equation for an arbi-
trary power potential with a weak Coulomb-like component.
The expansion is valid in the region z = z, or Inr = z,, with 2,
given by Eq. (8). A second, linearly independent solution in
the same domain is obtained by changing the signs of w and A
throughout as we observe by looking at Egs. (17) and (18). It
can also be seen from these equations that a further pair of
solutions 1s obtained by the interchanges

w—iw, g——q, h—ih
and

0o— —iw, qg—>—gq, h——ih
The physical implications of these solutions and eigenvalues
are discussed in Secs. 4 and 5.

Finally, we observe that we can define a creation opera-
tor a* and an annihilation operator a by

a+“—li+iﬂ)
dw 2
d i
a= —i— — —w,
dw 2

respectively so that [a,a"] = 1. The operator &, can then be
written

Y,=2a"a—qg+ 1
A vacuum state |0) or rather the ground state wave function
(w|0) is defined accordingly by

al0) =0 or al@){w|0)=0.
The perturbation method can then be carried through in
terms of the operators ¢ and a* as a method for calculating

the quantum fluctuations around a local minimum of the
potential.

3. A SECOND PAIR OF ASYMPTOTIC
EIGENSOLUTIONS

We now derive a second pair of large-# asymptotic ex-
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pansions for the eigenfunctions of the wave equation for our
potential. This pair is valid in regions of large |z| where the
expansions obtained above are no longer applicable. Of
course, the corresponding eigenvalue expansion will be iden-
tical with Egs. (32) and (33) above. For reasons of simplicity
we ignore the Coulomb part of the potential in this section
although it is not difficult to include this as well.

Our starting point is Eq. (6) in which we insert for L 2the
expression (16) in terms of the quantity 4 which, again, is to
be determined by iteration. We then have the equation

4’ +(U(z)— —h4——+%qh2+Ah)¢=O. (34)
dz’ 42+ 4)
It is convenient to make the substitution
z=y—c 35)
Then, choosing c such that
. 2a 1/2
< ~(garn) o (30
i.e., c = — z, Eq. (34) can be written
d2¢(y)_h_4<__/l_+Le<2+my_ezy)¢(y),
dy? UANA+2  A+2
+ (3gh* +4h)(y) =0 37
Next we set'
N
8 () =xe £ o [ o), (38)
where
v(y) = _L 4 Le(z +AW o2 (39)
A+2 A+2
and x( y) satisfies
d’x + h_z_vl/z(y)fi_ h? . v'(y) x
dyl /‘L 172 dy 4/1 172 U1/2(y)
+ (4gh* + 4h)x =0. (40)

From now on we consider only the equation for the upper
signs. The equation for the lower signs leads to another solu-
tion which can be obtained from the solution we shall derive
by changing the signs of 2 2and g throughout. Thus, choosing
the upper signs in Eq. (40), we can rewrite the equation in the
form

2
G, x= ~2—2(d—)2€+Ahx), (1)
h dy
where
S 2 nd 1 v’
@q:—mu E—Wﬁ—q- 42)

By construction, 44 is at most of O (0) in /2 * for h*— 0.
Hence, to a first approximation we can neglect the terms on
the right-hand side of Eq. (41) and write for the solution to
that order

x© = X, (43)
where x,, is the solution of
2 ,x,=0, 44)
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ie.,

C /11/2 Y d
= e - L2 ay

2 Ul/Z( y)

where C is an overall multiplicative constant which we ig-

nore in the following except in the context of normalization.
Proceeding as in the derivation of our first solution, we

evaluate d °x,/dy* and obtain

dlxq 5 2 q/L 172,
+ Ahx =(Ah+ _——t
dy’ ! 16 20
2 ”
7 ) )
+ ——— —x,. 46
4 v 4’ (46)

Looking at the solution (45), we observe the following
relations:

Xqvj z(xq+1) Xq4) — Xq 47)
Xq Xy Xq Xg—j
Further, since
gq Y “@q —J
and
“@q Xg+i =j'xq +J7? (48)

it is desirable to reexpress Eq. (46) as a sum over various
X, . ; because then the perturbation procedure becomes par-
ticularly simple. This type of expansion is simply an expan-
sion in terms of eigenfunctions, such as, for example, a Four-
ier expansion. In order to derive this expansion we have to
use Eq. (45) and express y in terms of x . It is not difficult to
convince oneself that the series reversion which this step im-
plies is possible only if v(p) is expanded around a point y = y,
for which both

() =0 and V' (yy)=0.
Looking at Eq. (39), we see immediately that y, = 0. Then,
=3 %u<'>(0), (49)
i=2 L
where for i = 2,3,...
v0)y =24 +2) ' — 2. (50)
We then have (apart from an additive constant)
/{ 1/2 J*y dy 1 w )
= —Iny + ), (51
2 v y) ) y ’_217 Y
where
=~ La+ =i+
14! 12 H 2 243 ’
_ A+ DA -2)1+4)
e 24345 ’
etc. Expression (51) can now be substituted into the relation
172 ry
Faot _ exp[ A J‘ liy ] (52)
X 2 v ()

and the resulting expansion in powers of y can be reversed.
We then have

0 b
172 q—2i+1)
yi= Ydy, —— (53)
i=0 xq
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where
di=1, d,={/12)A +4),
ds=(1/2°3%)(54% + 344 + 68),
dy = (1727354 + 4)(7T94 * + 4464 + 892), etc.

Inserting Eq. (53) into (49) and inverting the series, we
obtain

Y 5, T, (54)
i 1, X

8y=18,= — 24 +4)8,=(1/223)(A7 + 111 + 22),

5 = — LtV 124 47184 +19232),...
2%.3%5

In a similar way we find
,2
L= 3 il (55)

2
v i=2,1,0 q

with coefficients
T, =47, =07 =(1/9A*— 1 —2),

= (2’13;4) L+ (149512 1 95901 + 38 772),...
and similarly
” o« x .
G TS | (56)
v i=2,1,0 X,

with coeflicients

€=2 &, =2(A+4),6=-A"-1-2),
A+ 4
e = (24 ' ) (6674 % + 47784 + 19 352,
and
v’ 1w Xg+2i
v - A2 ifgl,oxy Xq ’ oD

with coefficients
Ke=2,10, = — (A + 4k, =0,
K_,=

- %f;is)(um 2+ 71144 4 28 922),....

These expansions can now be substituted in Eq. (46). Then

dx —
2+ dhx,= Y (99+ 2%, (58)
dy i=2.1.0
where for i=0
5 2 1
(g9 +2) = T6‘7'2f + 'Z_K2i + %‘521 - Tz:’r 59

in particular
(9.9 +4) = i(g + 1Xg + 3),

@9+ = — 2+ DG+ 1),

andfori=0
(@) = dh+ ozt Lo+ Lo, — Le
16 ° 2° 4° 4°
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—(15¢° + (A + 4)*]. (60)

Thus, the first approximation x” = x_ leaves uncompensat-
ed on the right-hand side of Eq. (41) a sum of terms amount-
ing to

LY @a+ ., 61)

h? 5o
Using Eq. (48), we see that these terms can be taken care of
by adding to x “ the next order contribution

Gp ) __
AO =

2 & (gg+2
xm:F 5 (qqz. J)quﬁ (62)
J=21.
70

excluding, of course, the term in x, . The coefficient of x,, in
Eq. (61) set equal to zero, i.e.,

(9:9) =0,
yields an expression for 4 (to the same order of approxima-
tion) which is identical with the expression obtained pre-
viously for our other type of eigenvalue expansion and thus
verfies our previous results.

The complete solution is obtained in our standard fash-
ion'*"? Jeading to the sum

x=xO 4 xD @

in descending powers of /4 2. The corresponding equation for
4 and thus the eigenvalues is

< (g9+2) 2\?
=9+ — = +2,)+( )
9.9 hz,-:;,,, 2 (g+2q e

¥ e+ 29)g+29+25+2)
<53 o+ 4.
F=20 =2 (2 + 2)")
JEO j 470
X@+25+2Y.9)+ (63)

Successive contributions x ‘0, x (",
creasing sequence provided that

of x form a rapidly de-

h—zz— WETSY
q
ie.,
2 [0 dy 2
exp[ FA J m] <%h (64)
This relation allows arbitrarily large values of p (since
h*— o) but excludes the region around y =0of z= — cin

view of the logarithmic term in Eq. (51). Since — ¢ = z, of
Sec. 2, the latter region is precisely the region in which our
previous expansion is valid.

Investigating the solution (38) in the limit z— — «
(i.e., —0), one can show that

¢ (y)~r
= 12

+ h/72A 4+ 2" — (A +2) */2]g + O(1/h7)

on using the square root of expansion (33a). This solution
can therefore be identified as the regular solution (a similar
case has been discussed previously in the last paper of Ref.
12).
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Finally, we observe that operators a, , ; defined by

B _]i 172 dy
R exp[ 2 Tl

obey the following relations

Ay +j%Xq= 0, Ay jXg+j =Xy
g jXqvi=I%g 12
together with
o) - _;
[Jq’aqﬂ'] - S+

We suspect that an investigation of these relations in con-
junction with the better-known operators defined in Sec. 2
will reveal a deeper insight into the structure of our perturba-
tion solutions.

Thus, we now have two pairs of large-# asymptotic ex-
pansions of the eigenfunctions of the wave equation for a
generalized power potential together with a corresponding
expansion for the eigenvalues. These expansions cover (pre-
sumably) the entire range of the independent variable. We
could proceed to demonstrate that the two types of eigen-
functions we have derived are proportional to each other in
their common region of validity. Such a verification would
proceed along the lines of Ref. 11 and 12.

4. UNIFORMLY CONVERGENT SOLUTIONS AND THE
SCATTERING PROBLEM OF THE CUTOFF POTENTIAL

For the extension of our analysis to the cutoff potential
which also permits scattering, it is useful and desirable to
have yet another type of solution. For this reason we now
derive an expansion which is uniformly convergent for finite
values of /. This type of solution is similar to a corresponding
solution of the wave equation for the logarithmic poten-
tial.!*!* We therefore skip the proof of its convergence,'* but
investigate in more detail its relevance for the scattering
problem.

Our starting point is Eq. (6) which we write as

%_L2¢:(ﬁe(2+i)z_a62zyﬁ- (65)

For simplicity we again ignore the Coulomb part of the po-
tential (i.e., we take & = 0). Setting

p=e* (), (66)
we find that f'satisfies the following equation,
2
s ae( Lo 1)y 67)
dz? dz a

From now on we consider only the upper of these equations.
The solution of the lower equation then follows by changing
the sign of L. We solve Eq. (67) by iteration. Thus, if f; is the
solution of

d’ d
o o Yo _y,
dz* dz
we have
f, =const. or f,ce

We take the first of these alternatives, because the second
form leads to ¢ = e ~ L%, Ignoring an overall constant, we
take f; = 1, and set
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f=1+ Y, (68)

where f; is the solution of

d? d B .
—~ __F 2L— - 22 Az
dzzﬁ+ a'zf' ¢ (;e

1) L. (69)
Solving for f, , we set f; = e*g, (z) and then
1

ML+1)
Solving the resulting equation for 4,, we find

_B 1

T2 A+2)(A+2L+2)
Proceeding in this way, we obtain the solution

g =e"h —

ﬁ e(/{ + 2)z a e2z )
=1 —
4 +((/1+2)(/1+2L+2) ML+ 1)
[ Bze(u + d)z
AL+ 204 + 2L+ A + L +2)

af et e ( 1
A+8A+2L+H\ ML+ 1)

1 ) " a’e®
A+2DA+2L+2) 2(L+ 1)L +2)

[ BBe(Lidr 6)z
JAA+2DY¥UA+ L +2)A +2L + )L + 34+ 6)
aBZe(2/1+6)z
21+ 6)(21 +6+2L)
X( [1/4(L + D] + [1/(A + 2) (A + 2L + 2)]
A+dHA+2L+4)

1
* 4A +2A+L+2)A +2L + 2))
aZﬁ e(/l + 6)z ( 1
(A +2L + 6)A + 6)\ 32(L + DL +2)
V4L + 1)+ 1/ +2)A + 2L + 2))
A+ DA +2L +4)
a3e62

3212(L 4+ IXL + 2)(L + 3)

+ 0 (a*a’B.a’Baf ). (70)

As pointed out earlier, a second solution is obtained by re-
versing the sign of L or by replacing /by — / — 1. The solu-
tion ¢ = e “*f(2) is obviously the so-called regular solution.

We now look at the expansion (70) more closely and
sum the terms containing leading powers of z, i.e., terms in
a,a’,a’,- or terms in 8,423 °,.-.. Summing the terms in
a,a’,a’,+, we obtain

o LY@
SO = W an

and summing the terms in 5,82/ %, we obtain

2L ) < 2% 4
By _ 1 4+ [(A +2)/2)z
S=f (/14_2 2L A+ 2\ T —‘M
ﬂ 1/2 2L /(A + 2)
( 1 Y (A +2)/2]z) (72)
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where J and 7 are Bessel functions of real and imaginary
arguments, respectively. In each case an overall multiplica-
tive constant has been ignored. The expression (71) is inde-
pendent of the potential (i.e., 5 ) and so tells us simply that in
this case the solution can be expressed as a Bessel function.
The expression (72), on the other hand, gives us the behavior
ofthe wave function for z— oo and so for »— « . The function
I, has the following asymptotic behavior:

a0l

Considering only the dominant term of this expansion and
the leading terms summed by Eq. (72), we have (inserting a

constant N')
231/2
lex (+ L2
2) N+ /

(EBLY R Y -

The expression with the minus sign gives the asymptotic be-
havior of the bound state wave function. This expression is
independent of the energy parameter « and thus indicates
that the set of discrete states is complete, i.e., there are no
scattering solutions. However, if the potential is cut off at
some finite distance R,, the asymptotic behavior of ¢ is no
longer given by Eq. (73) and scattering becomes possible. In
fact, requiring the wave function to be continuous at R,, the
S matrix is

I1(x)=

/

) ~N ( ;L

) d‘pR (Ro)/d" + l.k‘/’R (Ro)
dig (Ro)/dr — ikbp(Ro)’

where @ = k ? and the subscript R indicates that the solution

used is the regular solution discussed above. The Jost func-
tion fi(k ) = f(e ~ "k ) is given by

wrf dUr(R,
Sk = e( W) a,(r L ik, (Ro)).

§—p R

(74)

(75)

Its zeros determine the eigenvalues or—as was shown in the
context of the linear power potential'*—an expansion

g=go+ Oexp[ — R+ 272], (76)

where g, is exactly an odd integer, and g only approximately.
For R;— o the cutoff of the potential is removed and we
regain the case of only discrete states. Of course, the order of
the limits 7~ oo , Ry— o0 is not reversible (in one case we have
a scattering problem; in the other we do not).

The asymptotic form (72) suggests that solutions can be
found in terms of cylindrical functions. This is in fact the
case. Changing the independent variable of Eq. (65) to

o= (Be(Z +A)z anZ)l/Z/(l +/{/2)’
we obtain the equation

2
2 2 2 a A
— I L+l + — l— =7
/
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2
e
2 B
For z— « this equation becomes
2
4% 1 db
dw’ © do

- (1 T +L/12/2)2 ﬁ)q} =0

A solution of this equation is

¢ = Ly 2)((0), an

which agrees with Eq. (72). The asymptotic form (77) gives
us a further important hint at the solutions of the wave equa-
tion for a power potential. It demonstrates the very close
similarity between the form (65) of this equation and equa-
tions of higher transcendental functions outside the circle of
hypergeometric and allied functions such as the modified
Mathieu equation. In fact, any solution of Eq. (65) parallels a
corresponding (admittedly somewhat simpler) solution of
the modified Mathieu equation,'' and hints at the solutions
of Eq. (65) can be found by consulting the literature on this
equation.

5. THE POWER POTENTIAL AND PARTICLE
SPECTROSCOPY

We now investigate some of the implications of our for-
mulas for power potentials. Of course, for the linear poten-
tial, many physical implications have been investigated in
great detail over the last few years—so in this case our main
results are explicit series expansions and thus asymptotic
formulas for quantities which have previously been evaluat-
ed only numerically. Formulas of this type are a useful aid
for numerical calculations and theoretical discussion.

Setting A = 1 in Eq. (32) we obtain

I+ 1= (%ap2 +8p + 8/4a + ) —igh?

lq (&)
|

5._

4+

3+

2._

]._

0 1 1 N
0 / /2 / 3 4

il d,:m(E-VO)GeV

FIG. 1. The first three Regge trajectories for the linear potential and
m = 1.65GeV, 8=0.3101 GeV?,and 6 = 0.,
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2 2
_ (q_+1_)_(19_ 65 % +>
25 ap alp?
5(1 2 2
NGRS/ A BT
25.32 ap 5a2p2
¢, (6)
e 4 ey (78)
wheregq=2n+ 1,n=0,1,2,..., and
p =2a/3 (forA=1only)
and (79
2
R = 2pa1/2(1 R ) (for
ap 8a2p2

A = 1 only).

Taking the square root of Eq. (78), we obtain the Regge
trajectories /,=a (E ). In Fig. 1 we show the behavior of
these trajectories for § = 0, f = 0.3101 GeV?, and quark
masses m = 1.65 GeV/c% The distortion of these trajectories
for values of § which are sensible in the present context is
very small; so we do not show this separately. We observe
that the trajectories are almost linear over the range of im-
mediate interest. Since

1+~ )"

we see that the slope is proportional to 1/83.
Next we solve the expansion (32) for @ in order to obtain
E. We use the following abreviations:

N=@+20+D —@*3)7'G¢ - 1)
XA+ 2)A —2)(A + 1),

T,=N, + 44 + 2)q,
_1.1}_ =A 1/2[2/(2 _+_/1 )ﬁ ]1//1’
R, = —(2*3)7(15¢' + DA + A + 1)A + 4)

+ @)@+ DA+DA+ DA +5). (80)
We observe that the linear potential differs from other con-
fining potentials of power 4542 in that the g-dependent part

of the dominant quantity N is positive [this follows from
the factor (A — 2) in N]. Then

gD+ p
cyA+2)
27,

~

1
—+ 29+ (V-

TABLE I. Particular values of quantities appearing in Eq. (96). The last
columnindicates therate at whichdf /dq/[f (¢)]'"* becomesindependent of g.

—df/dq
q f® — &) —df/dq  —dg/dqg < ———
1
1 0.78441 2.44575 0.04965 0.36523 0.05606
3 1.29595 3.39112 0.18617 0.52027 0.16354
5 2.29508 4.42526 0.31420 0.50615 0.20740
7 3.79006 5.40592 0.44073 0.47439 0.22638
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TABLE II. The lowest S and P states of charmonium obtained from Eq.
(83) using as input 6 /3" = 0.25 GeV (see text) and m = 1.65 GeV. B was
determined by requiring the difference of the masses of the states 1 °S, and
28, tobe 0.588 GeV. Then, 8 = 0.3660 GeV’ and § = 0.1788 GeV. The P
levels do not allow a comparison with data because Eq. (83) does not take
into account spin-dependent forces.

Mass (GeV) Mass (GeV)
State (calculated) (observed)
1S, 3.096 3.096
1P (3.469)
28, 3.684 3.684
2P (3.952)
31, 4.173 4,16 ()
45, 4.606 4.6(7)

ANA?+3A— D)+ (A +2)gA %+ 34 — 2)5
- 41 3/2(BT )/l/(/l+2)
q
R 172
- 212 B;" /1/(/1+2)5) ’ (81)
«BT)

where ¢, (8 ) is the coefficient of the term of O (1/4?) in Eq.
(32). ¢, (6 = 0) is given in Eq. (33). In the case of the linear
plus Coulomb potential this expression becomes

3c
2 3/2_iq_+_(N2 q

—
38 2 ¢ ar,
32N, + @) R, 5)1/2
2(BTq)‘/3 2Tq(BTq)”3
(82)
ForA =1,/=0thisis
2 3 (S 172
= e+ (ra+ . @) (83)
where
3q2 + 17
flg) = »E
_ 3¢(19.85186g> + 0.29640) (84a)
(39 +132) G + 111"
and
3¢ +6[(3-2°) 'G¢* + 1]
g(q): - 331/3¢ 3 1 /27173
2)' 59+ [3:2) 7 G + 1D
4 (6¢° + 1)
182/3{%q+ [(3_23)7 1(3q2 + 17)]1/2}4/3
(84b)

These expressions neglect the term of O (6)/h 2.

In Table I we give the values of f(g) and g(g) for
g = 1,3,5,7 corresponding to #n = 1,2,3,4. Table II gives the
lowest S states obtained from Eq. (83) and the values of the
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parameters involved (8,5,m). The values predicted for the
higher § states agree with those stated by other authors (e.g.,
Refs. 6 and 17). The P states, of course, have to be corrected
for tensor forces and spin—orbit and spin—spin coupling and
are therefore not given in Table II.

Spin-dependent corrections have been considered in
many previous investigations**'*° and are generally taken
over from the corresponding work on positronium. To lead-
ing order in (v/c)?}, where v is the relative velocity of the
quark and antiquark (each of mass m), the correction to be
added to the potential V(r) = g,r — (g,/7) is

3 1 dV(r I,
V()= ¢—_— LS + VV(»o o
A ot 7 ar = (No.-o;
2
b :"_V(Q_L.d_K(L)Su, (85)
12m? dar’ r dr

Here, L is the orbital angular momentum operator, S =
(o, + o,), and S, is the standard tensor operator, i.e.,

Si; = 3(o,-F)(0,F) — 0,0,

In the usual way we have, for § = 1 and, respectively,
J=L—1,L,and L + 1,

LS=~(L+1),-1L (86)

Similarly we have, for S = 1 and, respectively,? L =J — 1,J,
J+1,

27 +1 2 +1
Substituting Vinto V,, we obtain terms which are singular at
r = 0 (i.e., more divergent than 1/7%). Since there are no ac-
ceptable bound-state solutions for such singular potentials,
we have to regularize the singularity by the introduction of a
cutoff parameter a into the potential. We choose this param-
eter by using the following replacement in the singular
terms®*:

Li( - g_")_,L. £o y (88)
¥ r r+4a
Substituting ¥ into V., we then have

3 & &o ]
V()= — L-S
) 2m2[ r + nr + a)

1
3m?

+ [ il + 2mg, 53(")]‘"1 0
’

TABLE I1I. Effective Coulomb and confinement potential couplings after

addition of spin—orbit, tensor, and spin-spin contributions applied to char-

monium states 1 > * 'P, (note: the values uncorrected for these contribu-
tionsare 5 = 0.1788 GeV, 8 = 0.3660 GeV’). The cutoff ais taken to be 2.25
GeV'~0.45f, and the quark mass m = 1.65 GeV.

State 8 (GeV) B (GeV?)
1P, — 0.0822 0.3620
1P, +0.3305 0.3702
1P, + 0.6253 0.3728
1887 J. Math. Phys,, Vol. 20, No. 9, September 1979

TABLEIV. The charmonium states 1 2** 'P, assuming m = 1.65 GeV and
a=2.25GeV.

State Calculated (GeV) Observed (GeV)*
1°P, 3.530 3.561 +7x 107
1P, 3.435 3511+ 7x107
1P, 3.337 3413 +9x 107
“See Refs. 5 and 17.
bl [f 2T & _|s,. 89
2m*l r (P4 HP+add)

The contact term in & * (r) is best treated at the very end as an
additional perturbation. For simplicity we consider the ex-
pectation value of this term as a further constant contribu-
tion to E which we write as § ' ¢,°0,, & ' = const.

The values of our parameters, i.e., § and 3, were fixed
such that a is determined predominantly by the leading con-
tributions of Eq. (81) so that our expansion retains its valid-
ity as an asymptotic expansion in the sense that the first two
terms provide an approximation of the quantity to be evalu-
ated. In particular we required the contributions of §-depen-
dent terms to be small enough so that the square root in Eq.
(83) does not become imaginary. Under these conditions the
particle masses seem to be well described by our expressions.

Next we assume that on the average the separation of
the quark and antiquark in the meson is such that 0<r/a < 1.
In this case we can expand the regularized denominators in
rising powers of 7. Since the Coulomb coupling is in any case
supposed to be small, i.e., g,/m’a*<g,, we ignore all powers
of r higher than the first since these would have to be treated
as additional perturbations of the linear confinement poten-
tial. Under these conditions we have to add to V (r) the
contribution

- d,
Vin=— —+d+dr, (90)
r
where
3(L-S) ( go) gi(o,°0;)
d == — + —_ - V—
0 2m? & a, Im?
S, ( go)
- —le+ =)
12m? & a’
d = 6’(0‘1 '0'2 ), (91)
3g,(L-S) 8512
d = — .
2m*a* 12m?

In Table IIT we give the values of the couplings of the Cou-
lomb and confinement potentials corrected for these contri-
butions for the well-known state 125+ 'P, of charmonium
[i.e., & = m(go + do), B = m(g, + d,)]. The cutoff q is given
the value of 0.45f. We see from Table I11 that 5 changes only
slightly due to the constraint that a be large, whereas §
changes substantially. In Table IV we give the mass differ-
ences between these states calculated from Eq. (84) after cor-
rection for /540 [i.e., adding 3 /(/ + 1) to (3¢* + 17)/24
throughout)].

Midller-Kirsten, Hite, and Bose 1887



In view of the simplicity (and perhaps crudity) of our
arguments, the agreement with the experimentally observed
differences'’ can be considered to be very good. This algebra-
ic rather than numerical way of deriving these results has the
advantage of demonstrating more convincingly the impor-
tance of the effective Coulomb part of the interaction. More-
over, looking at d, given in Eq. (91) and at the values of L-S
and S, given by Egs. (86) and (87), we see that the LS con-
tribution dominates over the S, contribution and thus gives
rise to the ordering *P,, *P,, *P, instead of *P,, °P,, *P, (the
latter is generally obtained for baryon-antibaryon states?').

Since the quark mass is twice the reduced mass u, the
mass M, of a bound quark-antiquark pair in state g is given
by

M ¢ = 4 + E.
We observe that, since
a’\’(BT )2/1 /(A + 2
_ q ’

the level spacing has the following dependence on the re-
duced mass of the quarks

M, M, acp=4/*+D, (92)

Thus, the level spacing decreases with increasing power of
the potential.

Decay widths play an important role in exploring the
origin of a newly found hadronic state. The leptonic and
hadronic decay widths of a vector quark-antiquark bound
state such as 1 and 7 can be expressed in terms of the S-wave
bound state wave function at the origin. Thus,'

_ 167ra2e2Q
ry—ih)= ——=¥©O (93)
mw
and
I ($—hadrons) = -2 _ o) E g, (94)
81 m},

Here, a is the fine structure constant [not to be confused with
a of Eq. (3)], a, the strong coupling constant (4, = g,), and
ey, is the charge of the constituent quark of ¢. We can now
use the following semiclassical formula (derived by Quigg
and Rosner?) for the value of the S-wave wave function at
the origin, in order to derive an explicit expression for the
leptonic widths:

Q) 12 4E,

Y (0)* = )
|¥,(0)] a2 7

3
= s i( iam). (95)
27 dg \ 38
The differentiation involved in this formula assumes con-
tinuity in g, which is approximately true and, of course, best
when g is large. Expression (95) can now be evaluated explic-
itly with the help of Eq. (83). For / = 0,4 = 1 we obtain

BR[ 3 df 5 dg\ /
v ()= 2| — aC AN S - 2 N
|¥,(0)] 5 2[ 5 +(dq Pz dq)/'

(ra) - B‘i;(q))'“]

In Table I we give the g-dependent quantities in this expres-
sion for ¢ = 1,3,5,7. The last column of Table I shows the
rate at which the 6-independent wave function approaches a
constant value for increasing ¢. This is what one expects on
the basis of Eqs. (84a) and (96). With the help of Egs. (81)
and (95) it can be seen that, for a confinement potential of
power A,

[FOTETES
whereas for the logarithmic potential'™
|¥,0)> < 1/Qn + 1)
and for the Coulomb potential*
¥, 0)]* e 1/n.

In Table V we give the leptonic decay widths of ¢ (3096) and
its radial excitations. The available experimental data are
taken from Ref. 25. The agreement between calculated and
observed values is reasonable and perhaps even good, if we
remember that Eq. (96) is strictly valid only for large values
of g. The Coulomb potential seems to produce a slight
change of these decay widths. In view of the importance of a
proper quantitative understanding of these widths, it seems
essential to derive the exact form of | ¥, (0)%, i.e., as an as-
ymptotic expansion in descending powers of /4 *. The deriva-
tion of such a form requires the normalization of our wave
functions. This can be done? but is beyond the scope of the
present investigation (asymptotic expansions of this type
have been derived for the normalization constants of eigen-
solutions of several periodic equations—see, for example,
Refs. 11 and 12). Nevertheless, the numbers in Table V
strongly support the idea of treating the Coulomb potential
as a perturbation of the confinement potential. It would
clearly be wrong to argue that the wave function at the origin
(r = 0) is dominated by the Coulomb potential, since in that

(96)

g=2n+1

DA+ 2)
b

TABLE V. Leptonic decay widths calculated from Egs. (93) and (96); all parameters are as in Table I1.

I (y—IT) (keV) T (1T (keV) I (W—ID) (keV)
q M, (GeV) for no Coulomb modification with Coulomb modification by experiment *
1 3.096 3.33 3.54 4.80 + 0.60
3 3.684 2.35 2.38 2.10 + 0.30
5 4.16 1.84 1.79
7 4.60 1.51 1.42
*See Ref. 25.
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case the decay widths of successive radial excitations would
decrease much more rapidly.

6. CONCLUDING REMARKS

In the above we have demonstrated that it is by no
means essential to use numerical integration techniques in
order to obtain the meson spectrum and its decay widths
from the nonrelativistic wave equation. Perturbation theory
can be used to handle almost any problem of this type (e.g.,
also the baryonium spectroscopy which we have currently
under investigation). The solutions that we derived above for
an arbitrary confinement potential with or without a weak
Coulomb component are of two types: asymptotic eigensolu-
tions or (presumably uniformly convergent) standard series
solutions.

In the case of the latter we have shown that solutions of
different forms exist, e.g., expansions in terms of functions
appearing in the potential or in terms of Bessel functions. In
fact, comparing Eq. (6) with the modified Mathieu equa-
tion,'"?” we see that both equations are of the same general
type. The solutions of Eq. (6) therefore parallel the solutions
of the modified Mathieu equation. This correspondence ap-
plies also to the asymptotic eigensolutions.!' Thus, consider-
able information on all aspects of the problem defined by the
wave equation for a confinement potential can be obtained
from the literature on the Mathieu equation.

In the above we exploited particularly the asymptotic
eigenexpansions and eigenvalues. On the basis of earlier in-
vestigations of asymptotic expansions of Mathieu functions
and their eigenvalues,'''* we expect these expansions to be
such that successive terms alternate in sign, thus indicating
the Borel summability of the expansion.?® Qur application of
these results for physical predictions could be improved by
the computation of further terms or even by the application
of Dingle’s converging factors.”* A further aspect of consid-
erable interest is, of course, the calculation of the normaliza-
tion constants (again in the form of asymptotic expansions),
since these will allow a more precise determination of lep-
tonic decay widths.?

The considerations of this paper were based on the as-
sumption that the Coulomb potential is sufficiently weak to
allow it to be treated as a perturbation of the confinement
potential. This procedure is suggested by the slow decrease
of the leptonic decay widths of successive radial excitations
of ¢ (3.096) and the good agreement with experimental data
achieved for the level shift of the 1 2 * ' P, states. One might
ask the following:How is it possible that the behavior of the
wave function at the origin is determined predominantly by
the confinement potential and not by the Coulomb poten-
tial? Our answer is that the perturbation procedure we use is
carried out in the region of finite z (i.e., #5=0) for sufficiently
small values of 5. ¥ (0) is therefore the value obtained by
finally extrapolating the wave function to the origin. An im-
provement of our procedure which we consider worth exam-
ining is the replacement of the Coulomb potential by the
improved form

8o
rin(r/ry)
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as suggested by asymptotic freedom arguments.” The alter-
native method of treating the power potential as a perturba-
tion of the Coulomb potential (this has been investigated in
Ref. 30) does not apply here, since then the confinement
would be lost; a relevant area of application of this case is
baryonium spectroscopy.
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Wavefunctions and eigenvalues for the Schrodinger equation on the half-line x >0 are examined

in the presence of a potential vyx ~* 4+ v;x ~ ' + v,x ~ "%, With a special choice for the constant v, the
wave equation can be solved in terms of parabolic cylinder functions. In this case the spectrum is
determined by an implicit equation that arises from the boundary condition that must be imposed

at x = 0. Depending on v, and v,, the spectrum can contain and infinite number of discrete values,

a finite number, or none. It is pointed out that continuous variations in v, or v, can convert
negative energy bound states into positive energy responances, or vice versa, and the threshold

behavior has been investigated.

I. INTRODUCTION

It is often enlightening to achieve exact solutions to
model problems in quantum mechanics, even though the
models may not directly represent physically realizable sys-
tems. The example treated in this paper largely fits that de-
scription. It entails the exact determination of wavefunc-
tions and energy levels for a single particle subject to a
central potential of the form

ViP)=vor 24v,r ' 4u,r 2 (1.1)
The method of solution requires that v, have a definite value;
however v, and v, are arbitrary, and the resulting flexibility
in V generates an interesting richness of behavior.

The following Sec. II provides some preliminary trans-
formations which facilitate the solution of selected quan-
tum-mechanical problems in terms of parabolic cylinder
functions. Section III shows how the spectrum specifically
for potential (1.1) must be determined in principle, while
Sec. IV carries that determination to essential completion.
Continuum solutions are examined in Sec. V.

One of the primary reasons for interest in the model
potential (1.1) is that it can produce sharp resonance behav-
ior. If v, <0 and v, > 0, ¥ (») will display a wide barrier
around an attractive core region. Presuming that v, is suffi-
ciently negative to produce bound states, variation in v, can
move their energies up or down, and in particular can move a
bound state to zero energy (the continuum edge). This spe-
cial circumstance which separates bound-state character
from resonance character is studied to some extent here with
emphasis on threshold behavior (Secs. IV and V). However,
we intend the present work to serve as the foundation for a
later, more complete analysis of these continuum edge
encounters.

Il. PRELIMINARY TRANSFORMATIONS

Our objective is construction of a class of solutions over
x>0 for the one-dimensional Schrédinger equation

D'"xX)+Bx)P(x)=0 2.1
subject to suitable boundary conditions. Upon introduction
of appropriate reduced units one has
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B(x) = 2E — 2V (x), 2.2)

where E is the total energy and V (x) is the potential energy
function. Equation (2.1) is also relevant to the radial motion
with a central potential V' (#) in a space of D dimensions.' For
that case the radial wavefunction R (r) may be written

R(»H =127, 2.3)
where @ is a solution to Eq. (2.1) with
B(x)=2E—-2V(x)—C(D,A)x 3 2.4)

and
CD,A)Y=AANA+D-)+iD-1DHD-3). (2.5)

In this last expression A = 0,1,2,-- is the quantum number
for angular momentum.
If @ can be expressed in the form

P (x) = f(x)¢ [g(x)], (2.6)
then direct substitution shows that the differential equation
(2.1) will be satisfied provided ¢ is a solution to

" 2f, g" ’ f”
+| = =— o'+
¢ 4 (g) ]¢ f(gy

B
+ =0.
(g ¢
2.7

It will be advantageous to eliminate the ¢ ' term. This will
occur by requiring f to be determined by g in the manner:

f=Cog)~ "2 (2.8)
where C, is any nonzero constant. Thereupon the differen-
tial equation for ¢ adopts the following form:

B B glll 3(g//)2
@7 A 4

We will now demand that the coefficient of ¢ in Eq.
(2.9) be quadratic in g,

$"(8)+(ag’ +bg+ ) (8)=0, (2.10)

where a, b, and ¢ are constants. In other words, we demand
that ¢ obey the general differential equation for parabolic
cylinder functions.? Therefore, we will have

$"(8) +

$(g)=0. (29

rrr ny\2
Bery=8_ _ 38 | (evugrbg+o).

e @2.11)
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Next it is necessary to identify functions g(x) which
upon substitution in Eq. (2.11) will confer upon B (x) the
requisite form (2.4) or (2.2). In doing so we must ensure that
the x independent term in B (x) can sweep through all possi-
ble values for 2F to avoid missing any eigenvalues. Several
simple examples can be listed.

(1) By choosing

gx) =x, (2.12)
one obtains
B(x)=ax’+bx+c. (2.13)

This is the form appropriate for the one-dimensional har-
monic oscillator with

2
o 5o &)
i a4 (2.14)
E= % _ b_,
2 8a

provided a < 0. After selecting a and b to represent appropri-
ately the curvature and position of the quadratic potential,
independent variation of ¢ will yield any F value, including
the well-known spectrum of equally spaced eigenvalues.

(2) With the choice

glx) = x>, (2.15)
Eq. (2.11) yields
B (x) = (5/36x%) + (4/9)(ax?* + b+ cx ~ ¥%). (2.16)

It is known on general grounds’ that an x ~ % term in B (x)
would prevent occurrence of any eigenstates provided its co-
efficient exceeded 1/4. However, that does not happen here.
One could therefore proceed to determine energies and ei-
genfunctions for the case (a<0):

5 2ax*"? 2¢

Vo= — = — - =,
72x* 9 9x23

2.17)
E= 2
9
(3) The case of primary interest in this paper corre-

sponds to

gx) = x'"2, (2.18)
for which
B(x) = (3/16x) + (1/8)a + b /x> + ¢/x).  (2.19)

Once again an inverse square term arises with a magnitude
consistent with the existence of eigenstates. The natural sep-
aration of B is obviously the following:

Vi) = — 232 a 8b1/2 a ?C-’
, = x X (2.20)
E= —.
8
We shall see in detail how the signs and magnitudes of b and
¢ determine whether the number of eigenstates is infinite,

finite and positive, or zero.

I1l. SPECTRUM DETERMINATION

Case 3 above leads to the following generic wave-
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function:
q)(x) — 21/2C0x1/4¢ (xl/Z)’ (31)

where ¢ is a solution to Eq. (2.10) over the positive real axis.
In this section we shall be concerned with bound states, i.e.,
a < 0. Setting

g = z b
- 21/2la|1/4 2|a| ’
3.2)
¢ (g) = w(2),

Eq. (2.10) transforms to one of the standard forms for para-
bolic cylinder functions?

w"(z) — (42° + A (@) =0, (3.3)
where
2
S A (3.4)
8|a‘3/2 2|a|l/2

The independent solutions to differential Eq. (3.3) are
conventionally denoted by U (4,z) and V (4,z). The latter di-
verges as z approaches infinity; only the former is an accept-
able solution. Thus,

¢(X):21/2C 1/4U A 21/2\a|1/4x1/2_ b
o* i 21/2| al 3/4
(3.5)
encompasses all eignefunctions.

It is unacceptable on general grounds for @ (x) to be-
have as x'/* at the origin; instead the leading order must be
x*/# at this point.” Consequently x = 0 must be a zero of Uin
Eq. (3.5):

2
v(- 6 ¢ ___° -0, (3.6)
8|a\3/2 2|a|1/2 21/2[0‘3/4
This condition will only be satisfied for a discrete set of nega-
tive @ values which, through the second of Egs. (2.20), deter-
mines the energy spectrum.

4 } §
2+ T j‘
2 b r 4
-4 N m=5 ‘1
m=4 m=3 m=2 1m=4 m=0

-6 ! ! h ) ] o
6 -5 -4 -3 -2 - ) 1 2

A
FIG. 1. Graphical determination of eigenvalues according to implicit Eq.
(3.6). The curves labeled i = 0,1,2,-- are loci of zeros for U (4,2). The four
curves emanating from the origin represent special cases of Eq. (4.1); I:
b= —l,c= -1 Ib=1lc= ~1; Mlib=1c=4; IVib= — 1,
c=4.
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IV. EIGENVALUE RESULTS

The task of deducing eigenvalues and their behavior is
simplified considerably by using a graphical analysis in the
real 4, z plane. The roots of U (4,z) correspond to curves in
that plane, and their intersections with another curve deter-
mined by the form of Eq. (3.6) yield the energy spectrum.
This last curve can be constructed by eliminating |a| be-
tween the specific forms shown in Eq. (3.6) for the variables
A and z, with the resuit

B 2 clz]??
since
b
== 2172| g |4 #.2)

along this curve the sign of z is opposite to that of b.

Figure 1 shows the A4, z plane with loci of zeros for
U (4,2), and selected examples of the curve (4.1) for each of
the four sign assignments for b and c.

The following properties should be noted for the zeros
of U (4,z).

(1) The zeros occur along an infinite set of curves con-
fined to the left half plane.

(2) Each curve intersects the negative 4 axis once and
only once at a point of the form — 2m + 3/2),m =0,1,2,---.
The integer m is a convenient index for the curves.

(3) All of the curves lie below the upper branch of the
parabola 4 = — 2%/4.

(4) For each curve 4 (2) is a single-valued function with
unique inverse and the property

lim A@) = —(m+1/2). (4.3)

We now discuss each of the four sign assignments separately.

(1) 6 <0, ¢ < 0. By referring to Eq. (2.20) we see that this
case makes both the x ~'/? and the x ~ ! parts of the interac-
tion repulsive. Since the attractive x ~ * term alone is incapa-
ble of producing bound states’ it is obvious that addition of
these extra repulsions will not change that situation. The
graphical manifestation is clear in Fig. 1, for curve (4.1) lies
above the upper branch of the parabola 4 = — z%/4 and
hence cannot intersect any zeros of U.

(i) 5> 0,c < 0. Thex ~ V?*term in ¥ (x) is now negative,
but the x ~ ' term remains positive. Since the former will
dominate ¥ at large x and since it has such extreme range, it
is clear that an infinite number of bound states should exist.
This is also clear from Fig. 1, since the corresponding posi-
tion of the curve for Eq. (4.1) lies below the lower branch of
A = — z*/4and intersects each U-zero branch in turn. If the
magnitude of the negative quantity c is very large, Eq. (4.3)
may be used to derive the following limiting distribution of
eigenvalues:

b bi(m 4 1/2)
T 32| 320e|*?
Such equally spaced levels are characteristic of harmonic

oscillators, and indeed that is what this limit has generated.
The interplay between attractive x ~ /? and strongly repul-

4.4)
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sive x ~ ! potential terms gives ¥ (x) a negative broad mini-
mum at

Xpmin=4c’/b?, (4.5)

in the neighborhood of which quadratic behavior obtains.
The low-lying states in this case are sufficiently localized
around x_ .. to resemble harmonic oscillator states, and Eq.
(4.4) reflects that fact.

(iii) b > 0, ¢ > 0. The potential is negative everywhere
and of course long-ranged. The bound states are infinite in
number, since curve (4.1) must cross each U-zero curve (see
Fig. 1). As b shrinks to zero, the curve for Eq. (4.1) ap-
proaches the negative A axis. In this limit ¥ (x) contains no
x ~ V% part. Remark 2 above is relevant for locating intersec-
tions, and one obtains the Rydberg series

C2

128(m + 3/4)°
For small b it should be a relatively straightforward matter
to calculate successive orders of perturbation to this last
result.

(iv) b <0, ¢> 0. This is the most interesting of the four
cases in that the number of bound states depends crucially
upon the magnitudes of b and c. It is also the case which
permits resonances to exist since ¥ (x) will have a positive
barrier.

As b changes continuously from positive to negative,
the preceding case (i) transforms to the present case with
Rydberg series (4.6) marking the boundary between the two.
Any given eigenvalue increases continuously as b decreases,
since Vis being made less attractive. As we shall now see, it i1s
possible to decrease b to a point at which any given eigenva-
lue increases to zero and ceases to belong to the bound-state
spectrum. This last phenomenon is associated with intersec-
tions in the second quadrant of Fig. 1 that recede to infinity.
In order to identify conditions that produce such behavior, it
suffices to have an asymptotic expansion, valid for large |4 |,
for the U-zero curve with index m in Fig. 1%

E(=0)= — (4.6)

2
2, ~2|4 | — (~a,,) B (—a,. ) ro(4] -y
" 4|V 20(4 | ’
m=0,1,2,-., 4.7

where a,, is the nth (negative) zero of the Airy function Ai(z ).
The first few a,, have the following values®:

a, = —2.3381 0741,
a,= —4.0879 4944,

(4.8)
a, = — 5.5205 5983,

a, = — 6.7867 0809.

Equation (4.1) can be used for the intersections of interest to
eliminate 4 from Eq. (4.7), and then z can be expressed in
terms of @ and b according to Eq. (3.6). Taking into account
the second of Egs. (2.20) we find (for 4,, > 0),

Em = - [lslb ‘4/3/64( - am+ l)z]Am + O(A fn))
4.9)
where

A, =a, ,  +c/|b|? (4.10)
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This shows that the mth eigenvalue vanishes when 4,, van-
ishes, i.e., when

/b= —a (4.11)

For slightly larger values of ¢/|b |*°, E,, varies linearly
with 4. A more detailed analysis shows that higher order
corrections in Eq. (4.9) involve only positive integer powers
of the quantity 4,,. It is easy to show that at threshold each
bound state exhibits the following asymptotic exponential
order:

& (x) = expl — 2/3)|b |2¥* +o(x¥H]. (4.12)

Consequently the bound-state property of square integrabi-
lity is retained at threshold.

m+ 1

V. CONTINUUM SOLUTIONS

All positive energy states are unbound, and they form a
dense continuum. The second of Egs. (2.20) establishes that
a > Ofor these unbound states. In place of Eq. (3.2) for bound
states, we now set

_ z b
&= 21724174 YN
.1
$(g) = w(2).
Consequently w must satisfy
w"(2) + (322 — A)w(z) = 0, (5.2)
2
d= b _c (5.3)
803/2 2al/2

The real solutions to parabolic cylinder Eq. (5.2) conven-
tionally?aredenoted by W (4,z)and W (4, — z). Consequent-
ly, aside from a normalization factor the general solution has
the form

w(z) = cos6W (4,z) + sinfW (4, — z), (5.4)

where 6 must be chosen to satisfy boundary conditions.

Just as was the case with bound states, continuum
wavefunctions @ (x) must behave as x*/* near the origin.’
This in turn requires that w(z) vanish when x = 0, that is
when

e b (5.5)

2[/203/4
In order for this to occur & must obey the following relation:
tané (a)

B W((b 2/805/2) _ (c/zal/Z),(b /21/203/4))
W((b 2/803/2) . (C/zal/Z), _ (b /21/203/4))
(5.6)

This completes the determination of positive energy states,
at least in principle.

These continuum solutions are useful in locating reson-
ances, i.e., complex energy states with pure diverging cur-
rent boundary conditions at x = + c0:

In®, ~i2E ) *x. (5.7

Here E will have a negative imaginary part whose magnitude
determines the resonance width in the usual way. Along
with such a resonance there will also exist a time-reversed
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“antiresonance” state with pure converging-current bound-
ary conditions:

In®@, ,~ — iQE ¥)"*x. (5.8)
By using the large z asymptotic forms? for W (4,z) and
W (A, — z) one can show that the resonance condition (5.7)
leads to the following implicit equation:
2 .
U[i( b ¢ )’ b exp( — mi/4)

84372 - 20" 21724374

The complex resonance energies are again given by the sec-
ond of Egs. (2.20) now in terms of complex a values which
satisfy Eq. (5.9). The analog of the last equation for the time-
reversed states is

U[ _ 1'( b> ¢ )’ b exp(mi/4) ] — 0. (5.10)
803/2 2a1/2 21/2a3/4
For any solution a of Eq. (5.9), a* solves (5.10).

Analytic connections can be established between bound
states just below threshold and the corresponding resonance
and antiresonance energy pair above threshold. This is ac-
complished by giving the originally real parameter b an in-
finitesimal imaginary part as it passes a threshold value. If
the imaginary part is negative, Eq. (3.6) for bound states
converts automatically to Eq. (5.9) for resonances. If the
imaginary part is positive, Eq. (3.6) converts to Eq. (5.10) for
antiresonances. Therefore, the bound state energy in the
complex b plane displays a cut at threshold, with the reso-
nance and antiresonance pair at corresponding positions
along the cut.

It is significant that Eqs. (5.9) and (5.10) lead to identi-
cally the same small 4, series that was indicated in Eq. (4.9)
for bound states at threshold, but now with negative 4,,.
This series, which is evidently asymptotic rather than con-
vergent, yields a real result above threshold whereas we
know that the resonance state has an imaginary part. Clearly
this imaginary part has a zero asymptotic series in positive
powers of 4 .

=0. (59

VI. DISCUSSION

Although it is proper to regard the potential V' (r) in Eq.
(1.1) as artificial, it is worth noting that an electrostatic
charge density p(r) exists which would cause a unit charge to
experience just that potential. By employing Poisson’s equa-
tion, one finds the appropriate density in three dimensions to
be

p(r) = v, lim £ (&,7) + v,8(r) + v,/ 167772, 6.1)
€0
where
fer)=3/27e', (0<r<e),
= — 1727, (e<r). (6.2)

Similar results can easily be obtained for other values of D,
the space dimension.

There may be some interest eventually in comparing
exact eigenvalues for the present model with those approxi-
mate semiclassical eigenvalues that follow from quantiza-
tion of the classical action.®* In this regard, we mention in
passing that the general radial potential containing terms of
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arbitrary strength proportional to r ~ %, r =2,

r~!, and
r~ 2 is a case for which the classical equations of motion
can be integrated in closed form using Legendre elliptic inte-
grals of the first and third kinds.® The present model is just a
special case of this more general potential.

The available theory of the asymptotic properties of
parabolic cylinder functions®* is not sufficient to provide the
imaginary part of our resonance energies near threshold, as
discussed in Sec. V above. In principle the necessary infor-
mation could be achieved through direct numerical study of
Eq. (5.9), though this is likely to be a cumbersome proce-
dure. On this account it is useful to turn to the quasiclassical
WXKB method. That approximation indicates that the in-
verse lifetime just above threshold will be dominated by a
factor of the type (K > 0),

exp( — K /|4,,]*"). 6.3

The imaginary part of the resonance energy is proportional
to the inverse lifetime, and thus exhibits the same factor.
Since (6.3) has a zero asymptotic series in positive powers of
4,, we see that the WKB approximation is consistent with
the failure of imaginary terms to appear in Eq. (4.9) for 4,,
<0.

The present model may provide a convenient testing
ground for the method of complex coordinate rotation!'*!!
that seems to be computationally useful for locating reson-
ances.'*"’ In particular, the one-dimensional nature of our
model should permit extensive studies to be carried out on
the effect of various basis set choices in complex-coordinate-
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rotation calculations. The extent of agreement between the
computed thresholds and the behavior of the real part of the
energy there, in comparison with the exact result in Eq.
(4.9), provides a natural measure of numerical accuracy. At
the same time it would be instructive to see how resonance
lifetimes predicted by such calculations compare with the
WKB result.

The WKB approximation predicts that the energy in
the complex b plane possesses an essential singularity at
threshold. A natural sequel to the present study would there-
fore involve generating the first few terms in an exact b pow-
er series for eigenvalues. Standard methods of power series
analysis could then be employed to test for a singularity of
the WKB type at the known thresholds.
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A scale limit of ¢?in ¢* Euclidean field theory. |

Z.Haba?

Department of Theoretical Physics, University of Bielefeld, Bielefeld, Germany

(Received 28 June 1978)

It is shown that a scale limit (appropriately defined) of the Wick square of the free Euclidean field
in d <4 dimensions with mass m, exists and is a random field with values independent at every
point. When m;—0 a stable distribution is obtained. The same limit is then calculated in ¢* cutoff
field theory. After taking the scale limit the regularization can be removed. The limit field is again
independent at every point but with different density and mean different from zero. The
interpretation of the results in lattice approximation is given. The problem of restoring the
correlations between different points is considered as a perturbation around an independent-value

field.

I. INTRODUCTION

Field theoretic models depend always on some param-
eters (mass, coupling constants), which describe the correla-
tion length or the interaction strength. It is interesting
whether a limit of the model exists when the parameters go
to some limit values. Because the mass (and other dimen-
sional parameters) fixes the length scale, the problem can be
investigated by means of scale transformations. From the
mathematical point of view the problem is to find a limit
distribution under a scale transformation which is closely
related to classical limit theorems.'

Let ¢, be the Euclidean free scalar field in d-dimen-
sional space with mass m, [Gaussian random field with co-
variance ( — 4 + m})"']. We define the following scale trans-
formations between different field theories

R(A): @, x) =@, (X), (1.1)
T(A): @, ()~ ", (), (1.2)
SA): @, (X)=@,, (x/1). (1.3)

There is a relation between them in the sense that the opera-
torUA)=T, 4,(A) )R (A)isaunitaryoperatorinthe
Fock space @ ,L, (see Refs. 2 and 3). Therefore, any of the
scale transformation (1.1)-(1.3) can be interpreted in terms
of the remaining two.

We are interested mainly in the limit when the fields
become uncorrelated, i.e., the correlation length 1/m goes to
zero. If this limit exists then due to some general theorems’
the characteristic function of the random field should be giv-
en by (we exclude derivatives)

L{)= exp[ —ia jfz(x)d‘lx + im ff(x)d dx

+ Jd"x do(s)[e™™ — 1 —isf(x)] }, (1.4)

where do is a positive measure.

Let us take the simplest example—the free field. Then

“On leave of absence from Institute of Theoretical Physics, University of
Wroclaw. Poland.
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L, [f1=E [explip,, (/)]

- exp[ 1 [ 7606, -y as| )

where

1 eip(x ~ )
J L d%. (1.6)
Q@m?J p+my

We can see that the limit of R (1 )@,, = @;,,, when A— o is
trivial (L [f] = 1). However, (Lm“)’“ is also a characteristic
function because L,, is infinitely divisible' and we may
consider

Gm‘,(x - y) =

limL}, [f]= exp[ — i(1/m}) sz(x)d dx]. (1.7)

So, this limit exists and is of the form (1.4).

The limit of infinite correlation length has been exten-
sively investigated (see the probabilistic formulation in Ref.
5 and 6) due to its relevance to phase transitions. A limit of
infinite bare mass and coupling constants in superrenormali-
zable theories is interesting as a tool for construction of new
models of field theory, which from the conventional point of
view can be nonrenormalizable (see Refs. 7 and 8). We are
not able to do this limit in a renormalized cutoff free theory.
Therefore, our physical mass goes to infinity together with
the bare mass. That is the essential difference between our
limit and Glimm and Jaffe infinite scale limit.*”

In this paper we obtain a scale limit of :¢*, which is a
random field with values independent at every point* (Sec.
ID). Using this result we consider the scale limit of ¢* in ¢*
field theory (Sec. III). Then in Sec. IV an interpretation of
these results in lattice approximation is considered. Finally,
in Sec. V we discuss the possibility to restore the correlations
between different points by a perturbation around the inde-
pendent value field.

Il. A SCALE LIMIT OF THE WICK SQUARE

The Wick square is, after the free field, the second sim-
plest model of field theory. Its characteristic function can be
computed explicitly as the integral is Gaussian

¢ 1979 American Institute of Physics 1896



,,,,,

=exp( — 4 Tr{in{1 — if (— 4 + mg)™]

+if(—4 + myy'h. 2.1)

The logarithm can be represented by means of an integral
over a parameter’ and we get

1 (*ds _ i
vin=en( [ T
xTr[e““_“_'f)—(l+isf)e“’]). 2.2)

We will next represent the trace by means of the Feynman—
Kac formula (we assume d < 4)

Lint=es( g [ e fat w0
o S

X [exp[i ff x| 1 J:f(X(T))dT])
2.3)

where dW {, ,(x(-)) is the Wiener measure (see Ref. 10) over
closed paths, which startinx at r=0andend at x at 7 = s.

From the representation (2.3) it can be seen that the
Wick square is infinitely divisible. In fact Eq. (2.3) is the
Levy—Khinchine representation of an infinitely divisible
random variable in infinite dimensional spaces'! (for another
argument see Ref. 9). Therefore,

X {exp[i va(x(r))dr] —-1- iJ:f(X(T))dT])

= [ dudeo exolirze @4

|

is also a characteristic function of a field @,. It is not simple
to obtain the measure du . corresponding to its Fourier trans-
form (2.4). We will consider this problem in Sec. IV. Howev-
er, the correlation functions of ¢, are different from these of
:@’: only by multiplicative factors. @_ fulfills all Oster-
walder—Schrader axioms as :@*: does. So, g, is not “essential-
ly” different from :@2:. If 1/€ is an integer we can get :@*:
from @, as a sum

1/€"

=3 90 2.3
of independent random fields with the characteristic func-
tion (2.4). Let us now rescale ¢, and define

D.(x) =€ “p(x/€) = T_ (S (€)p. (x). (2.6)

According to the unitary equivalence mentioned in Sec. I, @,
is related to the Wick square with the mass m,/e. We put
f.(x) = f(ex), then we let -0 and prove

Theorem 1: Let f{x)be a continuous function with com-

pact support in R ¢. Then the weak limit e—0 of @ (f) exists
(if d < 4). Namely

lim E [¢7*%]
€0

= lim | du(pJe”* ")
e—0

lim L <'[ £.]

€—0

:exp{————1 J dse s 1-dr
202m)¢7% Jo

X Jd"x[e“f(") -1 —isf(x)]]

- fdyo(<1>o)e"/“’~“’. Q.7

The limiting field @, is a random field with values indepen-
dent at every point.

Proof: The Wiener measure is translation invariant. So, we can write x(# ) = x + (¢ ) and integrate over paths pinned up at
0 [we denote this by d W (w(-))]. We will then separate the w-independnet part in Eq. (2.4). In this way we can rewrite the

formulae (2.4) and (2.7) in the form

L f.] = exp( % J (—isi e~ J- dW () f déxfe¥ e 1 — isf(fx)])exp( ; J % exp( — mp 5) J dW (w(-)

X Jd dx o' (“)[exp[i L (f(ex + ea(r)) — f(ex))dr] S L "(Flex + ew(r) — f())dr

— (e O _ 1) J ' (flex + ew(r) — f (x))dTD
[¢]

1
= exp(
202m)*”?
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X exp( % f % exp( — m?s) f dW o (-) f d % e[‘f(")[exp[z' LS (f&x + ew(7) —f(x))dr} —1
— ifos (f&x + €(7)) — f(x))dr — ile =™ 1) J(: (f (&x + ew(7)) —f(x))d'r}), (2.8)

where we have taken the advantage of
f AW () = 1/Q2ms)* . 2.9

In order to prove the theorem we need only to show that the term in the exponential (we denote it by M) in the second factor
vanishes as e 0. This will be the case if we are allowed to take the limit e—0in M_under the integral sign. We will show that the
integrand is dominated by an integrable function. Then the result follows from Lebesque dominated convergence theorem. We

can use the inequalities
le“ —1l<|al, | —1—ia|<|al?/2

to get the estimate

m, =

—ife Y™ _1) Js (fx + ew(1)) —f(x))dr}

N

e"‘f()‘)[exp[i J‘S (f& + ew(r) — f (x))dr] —1—i J-X F&x + ew(7)) — f(x)dr
0 0

%( L" |[fx + eo(r) — f(x) !dr)z + 5[/ (x)] J: |f & + €w(r) — f(x)|dr

<Ls. f f + ewo(m) — £(X) | + sG] f f & + €w(7) — f(x)|dr.

Clearly

/(x4 €0(n)) /()| < sup |/ ()] (b + €(n) + xa (),

where y,,(x) is the characteristic function of the support £2 of fand we get

me<2(sup 170N ) (50 + [ pote + eotrar),

Now, the function on the right side is integrable as

J;I ggﬁ e " J dW i (w())d “x(sup|f | )ZS(SXn () + Lx Xt GQ(T))dT>

- m;‘y\-sl zl/l)(sup |f l )2 | N | .

2
<(2—77')‘{7<de€

So, the limit e—0in Eq. (2.8) can be taken pointwise. Q.E.D.

Remark: Fields with values independent at every point
have been advocated some time ago by Klauder'? as resulting
from an omission of gradient terms in the functional mea-

I

sure. The s density s e """ was suggested on the basis of
some mass shift arguments (see also another derivation in
Ref. 13). It seems that there are two ways of the omission of
gradients, either to let the gradient term to tend to zero or to
let it go to infinity and redefine the functional measure.
Klauder’s limit would correspond to the first method where-
as our model as it follows from Sec. IV is a realization of the
second possibility.

The question arises if the limit field @, still has anything
in common with the initial Wick square :¢*:. The common

1898 J. Math. Phys., Vol. 20, No. 9, September 1979

(2.10)

feature of Egs. (2.7) and (2.3) is their infinite divisibility and
therefore similar Levy—Khinchin representation. In fact, the
limit é—0 shrinks only the normalized to 1 measure

Q2ms)? *dW,, ,(x(-)) on closed paths passing through the
point x to a §-type measure concentrated only at this point.
This leads to a similar combinatorial structure of the Green’s
functions in both theories and further to the same expression
for the “pressure” defined by

pd)= lim

a—-r* |12 |

In f exP[ - %@2?()\/:2)]‘1/‘6,,,‘,(‘?’)
2.1
in ¢* theory
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and by
p(d)=lim Llnfexp[ - 1¢0(xn)]duo(¢o) @12)
2-r" |2 ] 2

in @, theory (y,, is the characteristic function of 2CR ).
Both limits can be calculated easily from Eqgs. (2.3) and (2.7)
corresp. and shown to be equal to

pd)=

f dse "= 1=d/2g =50 _ | L sg).
0
2.13)

This result was obtained earlier in Refs. 15 and 16 (Euclid-
ean pressure coincides with relativistic vacuum energy) and
Ref. 14 for d = 1,2,3. Equation (2.13) makes sense for any
noninteger dimension less than four (see e.g., Ref. 17 for the
relevance of noninteger dimensions). Assuming d < 2 the in-
tegral (2.13) can be computed (formula 3.434, Ref. 18) and
then continued analytically for other d

= e r(i- 4)

X [md — (m} + 0)?”? + Lodmg ~?].

1
227y

(2.14)

It is singular for d /2 to be equal to a positive integer. For
d = 2 we get a finite result through a limiting procedure
d—2. A similar limiting procedure for d—4 gives the free
theory result (i.e., corresp. to linear perturbation o)

p(4) =4Ao’
but the constant 4 is now infinite.

The limit measure y, (2.7) is still parameterized by the
free field mass m,. We could not perform the limit (2.7) ina
massless theory because the estimate (2.10) fails. However,
after the limit €é—0 is taken the limit measure du, (2.7) is
defined also for m, = O (we shall denote this measure d,).
In such a case we get the stable distributions' which play an
exceptional role in probability as a limit of any distribution
under renormalization group transformations (see also Ref.
6). Calculating the integral over s for m, = 0in Eq. (2.7) we
get for d5£2 (see Ref. 19)

L fl= eXp[ ~ Y jd'iXIf(x)]d/z

5 [ () 5

X(l + i3 o] 1g 2 )], 2.15
where

1 for 0<d <2,
B:{—1 for 2<d <4,
and ford =2
L) = exp| ~ 7 a1/ 00

S 2
X(l llf(x)l ﬂln]f(x)])], (2.16)
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where v, are constants which are finite for any 0 < d < 4 (see
Ref. 19 for explicit expressions for them).

The stable distributions are invariant under the follow-
ing scale transformation

D (xX)—>A 24D (x/A). .17

[There is an anomaly in two dimensions. Equation (2.16) is
scale invariant if we restrict f (x) to {f (x)d *x = Osimilarly as
in relativistic theory (see Ref. 20).] This scale transformation
coincides with that of the Wick square of a free massless
Euclidean field. Let us notice finally that all the correlation
functions of @, are infinite. So, this massless limit cannot be
obtained by taking a limit of the Green’s functions with

my=%0.
I1l. PERTURBATION BY ¢* INTERACTION

We are now going to compute the scale limit of :¢*: field
in ¢* field theory. [We are not interested in Green’s functions
of @ field itself because they vanish in the e—0 limit (see Sec.
IV).] Again we replace :¢*: by the rescaled field @, (2.6) and
¢* by @ .. The free measure di_ (2.4) is then multiplied by
the Gibbs factor exp[( — g5/8)5 @ 2(x)d “x]. However, the
interaction & ] d “x exists only if @, is properly regular-
ized. So, let

@, 0= [0.0)9.0)a%. G.)
We are interested in computing the €—0 limit of
S, 1=N_"] dulp,)

. s 4 )
xXexp| — ) P, (x)d x |expi(J,P,),
where
8 (52 (g

N, = | dudpdexp| — T b, (x)dx 3.2)

with the regularization p fixed. Then, we will remove the
regularization. Clearly, it would be much more interesting
first to construct (cutoff free) ¢ theory and then to perform
the e—0 limit. This is quite a difficult problem. As indicated
in Sec. I it requires a knowledge of the behavior of ¢* when
the bare mass m,— oc. With cutoff fixed we get an indepen-
dent value field because then the correlation length goes to
zero. In Sec. V we will show how to recover the correlations
among different points by a perturbation around the inde-
pendent value model. We think that this is an alternative
point of view at the e—0 limit in the ¢* theory without
cutoffs.

We can reduce the problem of calculating the limit of
S, ,[/] to that in Sec. II by means of the following
representation:

exp[ — ggéj @ (x)d dx] = J du, () exp[ é (zﬁ,(bf‘p)]
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= f dp,(¥) exp[ —;go('l’p"pe)]’

3.3)
where ¥,(») = fp,(»)¥(x)d “x and y, is the Gaussian mea-
sure with covariance /.

This integral exists with @ (x) in the support of du. if,
e.g., p,(v) is a continuous function of both variables with
compact support as will be further assumed.

Next, we insert Eq. (3.3) into Eq. (3.2) and apply Fu-
bini’s theorem in order to exchange @ and ¢ integrations.
We get

S, J1=N_, f duy (D) fdﬂg(qﬂg)

Xexp[(i/ 2P o] + gut,)]- (3.4)

The integral over @, has been already computed in Sec. II,
Eq. (3.4). Using results of Sec. II we can prove
Theorem 2: Let J (x), p,{y) be continuous functions (on

Rand R X R corresp.) with compact supports. Then the limit
e—0of §, J[J] exists and is equal to

SylI1=No,! [ dus@d exs] @) [ @3 ]

Xexp[(i/2)(PyJ)]. (3.5)

Proof: If p, (y) is continuous with bounded support then
also ¢, (x) has these properties for ¢ belonging to the support
of du,. We have shown already in Sec. I] the existence of the
€—0 limit of fdu (¢ )exp[(i/2)(D.,J + ¥,)] for each ¢. In
order to show the limit of S, ,[J] it is sufficient (due to the
Lebesque dominated convergence theorem) to show that the

absolute value of the integrand in Eq. (3.4) {equal to L <
[J. + g, ] see (2.4)} is bounded. But we have

i 1 - d — mf, 0
‘L ¢ [JE + gol/jp,t ] l = exp[ J d €
2J s

x J AW 3o() J ddx[cos( JO

X (J + 8ol )x + ea)(r))dT) - 1] } <1

as cosa — 1<0. So going with € to zero we get, due to Theo-
rem 1 of Sec. 11,

So,1= [ duyw) jduo(qbo)

X exp{(i/2)J + &¥,

”

D).

We are again allowed to exchange @, and ¢ integrations
(Fubini theorem) getting the result (3.5). Q.E.D.
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We are now able to remove the regularization p appear-
ing in Eq. (3.5). The function p ( y) contains a volume cutoff
and a smearing out over a finite space region. Let x—y, then
we face the problem of defining

lim @(x)PD( y).

This problem has been solved for independent value fields by
Hegerfeldt and Klauder®' using the Wilson-Zimmermann
method?* of forming the renormalized powers. Due to Wil-
son and Zimmermann an expansion exists for x—y

WP (y) = Y w,aNPE) +R(xy),  (3.6)
where w,, are functions singular at x = y and R (x,p) is regu-
lar when x—yp. @ %" can be considered as a renormalized
square. For independent value fields there is only one sigular
term in the expansion (3.6). The way to pick it up is given by
Ref. 21.

Theorem 3: Let p2( y)—c8(x — y) and let £ (x) be a con-
tinuous function with a compact support. Then the operator

D5 ,(f) = SP] (x)f (x)d “x converges strongly to @ (f).

The need for multiplicative renormalization and no
subtraction are remarkable features of the construction of
renormalized powers of independent value fields in compari-
son with ¢* theory we have started from. This multiplicative
renormalization is contained in the assumption that p2( y)
—¢8(x — y) and not p,( p) itself. Here, ¢ is a dimensional
constant which has to have dimension (length) ~ *if
8@ % (f) is to be dimensionless. If we construct this con-
stant from the constants m, and g, being at our disposal then
the Fock space scale covariance (generated by U (4 ) Eqs.
{1.1)~(1.3) and below) will be preserved. From dimensional
reasons we should have ¢ = mdu(y*), where u is an arbitrary
function of the dimensionless coupling constant
v =gim? *. After the limit p—c is taken it is possible to
calculate the expression (see Ref. 21)

-8

jduo@o)exp[ @ i(f)]exp[ Low)]

— s 1 ds

1
= exp( W J dse s
X Jd x{explis] (x) — Lggmusif(x)] — 1 —isJ (x)}).

3.7
Now, we set f = y, and go with £2 to R “. The normalization
factor N, , in Eq. (3.5) corresponds to J = 0 in Eq. 3.7).
Dividing by N,, , we get in the limit 2—R ¢ a finite result for
the characteristic function

1

WJ ds exp( — mgs — 4gomius’)
T o

5,11 =exo

s ! "“J‘ddx(e”“” — 1 —isJ(x))
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; o ~mis. —dn
wexpl — ____J dse "'s

p[ 2(277)d/2 0
X —e (1/2>5ﬁm15“-‘l)fddx.1(x)]

df :

il f du, (P) exp[ _’2_ @ (J)]. (3.8)
Thisis again a random field with values independent at every
point but now the spectral function do(s) [Eq. (1.4)] is modi-
fied by an interaction term in comparison with the free case.
The Fock space scale covariance (mentioned in Sec. I) pre-
sent in Eq. (3.2) is preserved in the scale limit (Klauder’s
independent value field'? does not fulfill this scale covar-
iance). The mean value of the field is different from zero and

equal to
1 - —mis_ _d/2
_— J dse s
(277_)d /2 o)

X [1 —exp( — $gsmius’)].

(P(x) = —

3.9

This nonzero mean value of @ should not be considered as
surprising. The :@* field can have a negative mean value also
in the constructive ¢* field theory if a mass shift + o:¢* is
present in the interaction (see Ref. 23). In our case (:¢*:)?
differs from :¢*: by an (infinite!) positive mass shift term.

In Sec. I1 the pressure in the limit theory has been calcu-
lated and shown to coincide with the pressure in the initial ¢*
field theory (mass shift model). Using Eq. (3.7) we can calcu-
late the pressure for ¢* ~ @ interaction with a mass shift c@

lim —_— 111 J. d#o(¢o)

2

8 g
XeXP{ - T£)'¢%Q(X!)) - ’2_¢0(l’n)

+ % [dm@eiaen)

_ 1 J\dse—mf»‘s—lﬂd/z
2(277)11/2

X [exp( — so — ggm“us’/2) — 1 + os + Lgim“us’}.

(3.10)

we can rewrite Egs. (4.1) and (4.2) in the form

—l'f)—}—/lTrln(—A+m(2,)]

f[det (=4 +md)] ‘/21'[ 1‘(,1)

exp[ — A Trln(— A4 + m]

< II dp (x) ex

1 2 2 1 —2214ad
1225 p -4 [orttg ey~
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A comparison of this result with the initial ¢* needs more
detailed investigation and is postponed to a forthcoming
paper.

IV. INTERPRETATION VIA THE LATTICE
APPROXIMATION

We will explain in this section the significance of the
rescaling of the Green’s functions of :¢* and the meaning of
the measure du (@,) (2.4) in terms of the conventional Feyn-
man~Kac integral. Let us notice that formulae (2.1) and
(2.4) are just like characteristic functions of the gamma dis-
tribution' in an infinite dimensional space. In the finite #-
dimensional case we can derive by means of an expansion
into eigenvectors the formula

exp[ -ATrin(4 —iT)+ A Trind ]

_ f /DO TV = 172)07) (detd )"
27 (4))”
n dy
X [[ ——- (4.1)
=1 I)’/ I

For A = 4 there is an essential simplification in Eq. (4.1) due
to the disappearance of the denominator in the integration
measure. Such a denominator looks rather ugly in a func-
tional measure. So, we will represent it in terms of an expo-
nential by introduction of a new variable (such a representa-
tion is not unique, but is suggested by the requirement that
the additional variable ® be Gaussian.)
" 1

Y l}’/ ! 1—24

5nd /2

S Jen{ b g ) e
=1

=1

(4.2)

Then, setting y, = @ (I6), @, = @ (I§) (where & is the lattice

spacing) and

»4y)
= 28" Hp ) — @ (') + 3 mip(i6)s*
7
= 2 8% (I6)( — 4 + m) 9 (I'5),

(4.3)
T//' = 5df(15)511‘v

87" e () [det( — 4 + m2)]"?
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Xexp[ -1 j @ () — A4 + mde (x)d dx] exp[(i/Z) f @ (x)f (x)d dx]. 4.4

This formula shows that passing from the field :@* to @, in Sec. IL. (1 = 4€”) is equivalent to a replacement of the original free

6d/277,l/2

,,,,,,,,,, ! m do (x) CXP[ —3 J@ >x) @ *(x))' ~<'d “x
= dv,(.0). @.5)
Then, the addition of interaction in Sec. III can be done in the usual way by means of the Gibbs factor
expl — g3 S ‘(x)d “x1dv (¢,0)
5 expl — g3 S *(x)d “x1dv.(p.0)

The measure 4.5 (corresponding to € = 0) was introduced previously by Klauder' (“‘augmented” field theory) as an alternative
to the conventional quantization scheme. The modification (4.5) does not change equations of motion (because there are no
gradients of the @ field) but only the quasi-invariance property under translations ¢—¢ + 4. The field theory (4.5) or (4.6) is
not canonical as the quasi-invariance of the measure is destroyed. Our derivation of the formula (4.4) shows that a precise
meaning to the formal measure (4.5) can be attached through its Fourier transform (2.4).

dv (9,0)— (4.6)

Let us consider now the e—0 limit as formulated in Theorems 1 and 2. After rescaling (2.6)
@ (x)—€ “p(x/€) “.7)
the measure changes as follows:

exp[ — f @ ()d “X]dvf(sz»,@)* f det[3(—4 +m3)] 2~ T] %;Tz) 0
x [det(— 4+ )] T2 exp| - ey [ @:00tp 00 %]

—d

X eXP( - —ezi j @ X)) —4)p (x)d "X) CXP( - ng f @ ix)d “X> exx)( - £ 5 g f @ *(x)d "x) (4.8)

We can see that when €—0 the gradient term in the functional measure is not negligible at all. It tends to infinity and the
exponential to zero. This suggests that the functional measure becomes concentrated on stepwise constant functions in the limit
€—0. Infact, this can be shown starting from the characteristic function (1.4). If we add a source term fJ (x)@ (x)d “x generating
the Green’s functions of ¢(x), then after the scaling (4.7)

f J (X))@ (x)d x—e?? IJ (ex)@ (x)d “x

and vanishes as e-—0. Therefore, in Sec. II we did not take into consideration the ¢ field. Finally, Eq. (4.8) shows that the
effective coupling constant € ~ “gZ goes to infinity as e—0.

In Ref. 13 Klauder deals with another limit of the measure (4.5), when he neglects the gradient terms. Klauder obtains a
result different from ours (see Remark in Sec. IT). We could eliminate the gradient terms in the formula (4.4) by a suitable scale
transformation and reformulate the problem in a continuum theory as in Secs. Il and I11. However, we have gotten a divergent
or trivial limit as a result.

V. RESTORING OF THE CORRELATIONS. AN EXPANSION AROUND INDEPENDENT VALUE FIELD

Fields with values independent at every point are rather unphysical. They fulfill Osterwalder-Schrader axioms? but have
only trivial continuation to Minkowski space-time (see Ref. 25). We have shown that an independent value field can be a limit
of a Euclidean field with nonzero correlation length. Now, the following problem arises. Assuming we guess a limit of a
Euclidean model [we know the representation of this limit, Eq. (1.4)] when the correlation length goes to zero (physical mass
to infinity). Can we get a theory with nonzero correlation length (this theory can be itself a limit of, e.g., a P (¢ ) model with an
infinite bare coupling)? A related problem for Klauder’s model'* has been investigated in Ref. 26 where a perturbation of the
independent value measure by the interaction ¢( — 4 )@ was considered. Unfortunately, only some trivial (tree) diagrams
have been picked up.

We have shown in Sec. IV that our scale limit is not an omission of @( — 4 ) in the functional measure. Therefore, a
different perturbation scheme is needed. For the ¢? field theory (Sec. II) it is quite easy to get a perturbation expansion
restoring the correlations. It can be obtained from Eq. (2.8). We have shown that the second factor in Eq. (2.8) tends to 1 as
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€—0. Now, we will consider it as a perturbation. We assume that f'is an analytic function

Seteo) —fO= T —E s ol -0,

it iy =k Dileedg!

where

Fom=—2L

i\ iy
x| -0x:

(5.1)

Then, we can expand the second factor in Eq. (2.8) as a power series in €. Further we use Eq. (2.7) in order to represent the first
factor as Fourier transform of the measure u,. A typical term in the expansion has the form

T1/4000 expl/2X(@0 N1 = ] (( — (= DIE2

! ]

SPo(x,)

)CXP[(i/2)¢o(f)]- (52)

Using Eq. (5.2) we can sum up the series again and write (2.8) in a compact form as a perturbation of the field with independent

values at every point

L]

= f duo(Po) Cxp( —;— J s, — mis f dWi(w(2) Jd dx[exp[Z f dre ooy _2
o s A

6Po(x)

X o be) i
_ 2187521 _2; | dr(e — <oV — 1 ]) [ — &, ] 5.3
¢ ! J(; e ) SD(x) P 2 v ¢

In deriving Eq. (5.3) we replaced f(x) in Eq. (2.8) by — 2i[8/6®(x)] as follows from Eq. (5.2) and used the equation ¢*V
X f(x) = f(x + a). Eqs. (2.8) and (5.3) are just identities but our aim was to show that an expansion around the independent
value field makes sense and can completely restore the correlations.

The analogous problem with interaction is already less trivial. Due to Eq. (3.4) we can repeat all the steps leading to the
formula (5.3) in order to get for the regularized generating functional

S, 1]
. 1 (*ds * _ )
e N d / 0 ¢0 S o5 ?) A d. € (1)
f ()i )exp( ! f 2 f AW (w()d x[exp[z J R
2878040 ? — (DY __ i
e 2£ dr(e 1)) ) ]) exp[ 5 ¢o(J+gol//p)]. 5.4

Now, we can integrate over ¥ getting on the right-hand side
the factor

f de/(8) exp[ (/)P + got,)]

= expl[(i/2)P«J)] exp[ — %J‘Pap(x)d dx] (5.5)

which then should be differentiated in order to get S, [/ ]. In
the limit €0 there is no differentiation and in such a case we
were able to remove the regularization (Sec. III) by letting
PA)—8(x — ).

Such a simple solution is not possible for the series (5.4).
Differentiation of the function (5.5) over @, generates power
series in @,(x) times the factor (5.5). We can again include
expl — (g2/8)5 @ *(x)d “x] in the definition of the interaction
measure as in (3.7)-(3.8). But now the limiting procedure
Pi(}’)—n‘i(x — y)is not allowed, because with such a choice of

P

'
AD,(x,) CXP( ) f 0,04 dx)"o'
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Wehavetoletp, (n)—0(x — p) if @, in the power series is not
to disappear but then g5 @, (x)—g55(0)® % (x). So the cou-
pling constant renormalization is needed. Then, after differ-
entiation we get power series in @ "(x), which should be ren-
ormalized according to the prescriptions given in Refs. 21
and 22. This leads in addition to the coupling constant renor-
malization and also to the wavefunction renormalization.
After this is done, we get a renormalized power series in the
field @ [defined by Eq. (3.8) with g, replaced by renorma-
lized coupling constant g]. Then, the integration over du,
(3.8) gives finite results in each order of perturbation expan-
sion in €. However, it is rather difficult to investigate the
properties of the resulting theory due to the complexity of
Eqgs. (5.4)—(5.5). Nevertheless, it can be seen that such a the-
ory does not coincide with the initial ¢* field theory (3.4) we
have started from. This follows from the quite different ren-
ormalization procedures applied to the conventional expan-
sion in g, and the € expansion around the independent value
field. [If we performed the ¢ integration in Eq. (3.4) and then
renormalized the resulting ¢, theory without taking the lim-
it €0 we would get the conventional ¢* field theory with
some inessential rescalings.]
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VI. CONCLUDING REMARKS

It is expected that when correlation length goes to zero
the values of a random field become independent at every
point. The question is whether this limit field with values
independent at every point is nontrivial (i.e., different from
zero). If it is to be a nontrivial limit it should be carefully
defined with an appropriate normalization chosen. So far
much more attention was concentrated on the infinite corre-
lation limit due to its relevance to phase transitions. It seems
that both infinite correlation limit and zero correlation limit
are analogs of classical limit theorems of probability (see
Refs. 5 and 6).

We have shown that the scale limit of ¢* exists and we
have computed the corresponding limit in regularized ¢*
field theory. We think that such a limit can occur also in ¢*
without cutoff. Due to Glimm and Jaffe®’ there exists a scale
limit of (¢*), with nonzero correlations indexed by the phys-
ical mass. Now, when the physical mass m in this model goes
toinfinity, the correlation length tends to zero. This is just an
interchange of the limits m,— oo in cutoff theory and m—
in the scale limit of ¢* without cutoff. The field theories de-
fined as limits of superrenormalizable models, when some
parameters tend to infinity, are interesting as examples of
more singular theories’® than the well-understood superren-
ormalizable models. For a construction of such singular the-
ories the independent-value field can be a good starting
point. In Sec. V we have suggested an expansion around the
independent value field. We have pointed out that the per-
turbation series can be renormalized in each order of the
expansion parameter. However, a sum of an infinite number
of terms is needed in order to draw conclusions about the
correlations. Without summing the series we can calculate
some expressions which do not depend on correlations, e.g.,
the pressure, or depend on them in an irrelevant way. In the
forthcoming paper it will be shown that the scale limit may
be considered as a low (Euclidean) momentum approxima-
tion of a large coupling limit of superrenormalizable theories
and a small coupling limit for nonrenormalizable
interactions.
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It is well known that a necessary and sufficient condition for the conformal flatness of a three-
dimensional pseudo-Riemannian manifold can be expressed in terms of the vanishing of a third-
order tensor density concomitant of the metric which has contravariant valence 2. This was first
discovered by Cotton in 1899. It is shown that Cotton’s tensor density is not the Euler-Lagrange
expression corresponding to a scalar density built from one metric tensor. This tensor density is
shown to be uniquely characterized by its conformal properties coupled with the demand that it be

differentiable for arbitrary metrics.

Lovelock! has shown that in a 3-space, the only third
order (2,0)-tensor density concomitants of a metric which
are symmetric and divergence free are? g"/%¢ 7, g'/°G ¥, and
C Y where

C =€ (R}, — 4O.R Do (1)
The tensor density C 7 was first introduced by Cotton® in
connection with the conformal properties of three-dimen-
sional Riemannian manifolds. He showed that the vanishing
of C ¥ is a necessary and sufficient condition for the confor-
mal flatness of such manifolds. We shall call C ¢ the Cotton

tensor density.*
It is well known that

Viegi=E2Vy),
and that
VgG 1 =E i~ VgR),
where E 7 is the Euler-Lagrange operator.® The question

naturally arises as to whether there exists a scalar density .¥
of the form

:.(/) = f(gub; gub.c;"'; gabvl'l"'f-x) (2)
for which
Ci=E ‘j(,“f]). 3

The obvious choice of ag,; C Y (for some constant a) fails
since g;; C "=0 (cf. Ref. 4).

The function .#” in (2) can be treated as a differentiable
function of the variables g,,, g, .+~ The derivatives d /dx '
in the operator E ¥ become the operators

d g 9,
dx i ab,i agub ab.ci agab'c -
Equation (3) can then be interpreted as a partial differential
equation for the function .#”. Horndeski® has shown that the
Cotton tensor density satisfies
ac v
agab
d 2 C?C ab

dx "dx’ 98,4 .

E %C) — 0,

d 9ce ac e 4 ac
dx” 98, I8 8 up i

1905 J. Math. Phys. 20(9), September 1979

0022-2488/79/091905-03$01.00

:O’
a ab a ab i
d o7 9T, X7, @
dx" 08w 08 ki OZ.p k1
and
ace® acy
+ =0.
agij,/\'/m agab,k!m

Equations (4) are necessary conditions for the existence of a
function %" of the form (2) which satisfies (3).°” They can be
interpreted as “integrability conditions” for the partial dif-
ferential equations (3). (Anderson’ refers to them in this
way.) In fact, Eq. (4) are sufficient for the existence of a
scalar density 7~ of the form

7" = 7 (8abi--+; Bab.cdes Has - Pap.cde) (5
for which C 7 = E %(?”), where both g, and A,, are positive
or negative definite metric tensors.® Thus in the case of defi-
nite metrics, scalar density solutions to (3) can be obtained
by enlarging the domain of definition assumed for .#. In this
paper it is shown that no scalar density solutions to (3) of the
form (2) exist (for metrics of arbitrary signature) provided
certain differentiability requirements are imposed.*

Theorem: In a 3-space there does not exist a class C* * *
scalar density . of the form (2) satisfying (3).

Proof: For any tensorial concomitant of a metric tensor
with the form

F::: = FZ:"(gub; gub,c;“‘; gah(‘,---(‘“)’
then the functions F:::(¢), for all teR given by

F:::(t ): = F:::( gub; tgub‘(';"'; tagub.c,v-»r")’
define a tensorial concomitant of the metric. Evidently (1)
implies that

City=1t’c?, 6)
Let .7 be a scalar density of the form (2) for which (3) holds.
By direct computation we deduce that

ENL 1) =EN(LWt)=C ). (7)
From (6) and (7) we find that
t’CI=E N.7®)). (8)

It is evident that the d /dt derivative commutes with the E 7
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operator (. is differentiable). Thus differentiating three
times with respect to ¢ in (8) and then setting t = O we obtain

Ci=E WY, &)
where

o L[d

= 3 [dﬂ (‘f(t))H,:o' (10)

To construct .7’ we apply the replacement theorem ° to
Z(¢) to deduce that

:/)(t) = ‘{f)( 8ab O? tzgabcd;“'; lagabc.mcl,)’ (1 1)
where Sabeycys B =2,...,a, are the # th metric normal ten-

sors.” Substituting from (11) into (10) and doing the indicat-
ed operations we find that

L= nubcdugubcd(" (12)

abede

where 7 is (necessarily) a tensor density concomitant of
g,.only. Since n“**““ consists of a linear combination of terms
of the form'® g"¢"*", each term in the sum for 7°*°“* will be
totally antisymmetric in three of its five indices. Since g,,.;.
is symmetric in its first two indices and totally symmetric in
its last three indices we must have [by (12)] that

Z'=0.

The above contradicts (9) and therefore contradicts the exis-
tence of a scalar density .7 of the form (2) satisfying (3). O

The Cotton tensor density thus possesses the unusual
feature that it satisfies conditions (4) but cannot be obtained
via (3) from a scalar density of the form (2). It is conceivable
that by relaxing the demand that .#" be a scalar density one
may be able to find a function . of the form (2) for which (3)
holds."' The behavior exhibited by C ¥ is not a common fea-
ture among expressions satisfying Eqs. (4) or their general-
izations. In most cases the above behavior does not occur
unless the relevant expressions are homogeneous of degree

— 1 in the field functions' as is the case with C ¥,

An interesting application of the proof of the theorem is
the following related result:

Corollary: In a 3-space there does not exist a class C*
scalar density concomitant of the metric and its derivatives
which is conformally invariant.

Proof: Let /# "be such a concomitant. From the coordi-
nate transformation x ' = ¢x' for teR * (arbitrary) it follows
that

Iy e 2 3 a4+ 2
1 Y= ]/ (t gub;t gub‘c;""t - gub.(‘,-uc(,)‘

Since # "is conformally invariant and hence homogeneous
of degree zero in g, and its derivatives we find that at an
arbitrary point Pin the 3-space ¢ * % " = ¥ p(t) (cf. the no-
tation in the proof of the theorem). Since P is arbitrary,
t39/ = % (t) and the steps in the proof of the theorem can
now be followed starting at Eq. (10) (replacing |, _, by
lim, ,, ). O
The differentiability condition in the previous corollary
is necessary since the scalar density a, = (C’C%)"/* and
a, = (C’C3C*"" are both conformally invariant but nei-
ther is of class C ' in any neighborhood of a conformally flat
metric tensor. As York'? has indicated, one can use scalar
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densities such as a,, a,, and a, f(a,/a,) (where fis a real
valued differentiable function to obtain trace free, symmet-
ric divergence free (2,0) tensor density concomitants 7" Y of a
metric tensor. Given any such scalar density ¢ one simply
takes T Y = E %¢), provided one avoids those metrics for
whicha, = Oora, = 0. Any tensor density 77 constructed
in this manner has the additional property that T ’j

= guT i* is conformally invariant.

From York’s construction procedure it seems likely
that any tensor density 7 ¥ obtained in this way will not be
differentiable at a conformally flat metric (nor will it even be
defined there). This is due to the occurrence of terms involv-
ing negative powers of @, and a, in the resulting 7' V. By
demanding differentiability for arbitrary metric tensors, we
are led to the following characterization of the Cotton tensor
density:

Proposition: In a 3-space let T ijbe aclass C* (1,1) tensor
density concomitant of the metric and its derivatives (to some
[finite order) which is conformally invariant. Then T ’J =aC
where a is an arbitrary constant.

Proof: Using the argument which begins the proof of the
previous corollary we find that for all zeR *,

£’T=T'(1).

Following the same steps as in the proof of the above theo-
rem starting at (10) (using lim, , instead of |, _), we
obtain

T r"/ =7 ijadeegabcdw
where 77" is a tensor density concomitant of the metric.
Thomas’ (chapter 6) has shown that the third metric normal
tensor is a linear combination of R .4, terms and thus,
upon raising an index in the above equation, we find that

g ijabede
Y= .C Rabcd I

where ™ is a tensor density concomitant of the metric. Us-
ing the Bianchi identity along with Weyl' (to construct £ ™)
we obtain the nonvanishing terms

TV=b€"R7,,+ bR ", ,+be"R,

The dimensionally dependent identity 8 %2R “, , =0 im-
plies the 7" ¥ is of the form

TV=c¢,CY+ce”R .

The conformal invariance of T/, now implies that ¢, =0
and hence establishes the proposition. a

It is remarkable that the two conditions, viz., conformal
invariance and differentiability, are sufficient to obtain the
Cotton tensor density in a 3-space from all possible (1,1)-
tensor densities. Moreover, these two conditions also imply
all the properties of the Cotton tensor density, i.e., I’/ =0,
T, =0,and T Y = T /! This unique characterization does
not hold for spaces of dimension greater than three. For ex-
ample, in a 4-space the conformally invariant tensor density
g'*C "“*C,,, is not divergence free nor is it trace free. (C
is the Weyl conformal curvature tensor.")

Finally, it is easily seen that the method of proof em-
ployed in the above proposition can be utilized (in somewhat
modified form, depending upon the situation) to construct
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any differentiable (for metrics of arbitrary signature) tensor-
ial concomitant of a metric tensor with conformal transfor-
mation properties. Of course, in general the procedure is
more involved than the relatively simple proofs given for the
cases considered here.
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An explicit form of the relationship between g,, and the Brans-Dicke scalar potential ¢
in the interior of a perfect fluid with an equation of state p = €p as well as in the
matter free space, is obtained assuming functional dependence of g, on ¢. Plane
symmetric static perfect fluids in Brans-Dicke theory of gravitation are discussed.
Explicit solutions are also obtained for a fluid with € = 1/3, that is, for a disordered

radiation and some of its properties studied.

INTRODUCTION

In a recent communication Bruckman and Kazes
(1977)! have studied perfect fluid with the equation of state
p = €p for the matter content in Brans-Dicke’ theory of
gravitation. They have arrived at a simple relation between
8o and the scalar potential ¢ for the spherically symmetric
case in the interior as well as in the matter free exterior space,
which they used to obtain some explicit solutions interpreted
to be those for static spheres made of cold ultrahigh density
perfect fluid.

In the first part of this note the relations between g,, and
the scalar potential ¢ are generalized to both in the interior
and in the exterior, where we have assumed a functional
relationship between them instead of their being restricted
by any special kind of symmetry. In the second part it is
shown that field equations may be reduced to a nonlinear
differential equation involving only one metric coefficient
and the solution of this equation, once obtained will deter-
mine the others in view of the other existing relations. Ex-
plicit solutions for a very special case of disordered radiation
(e= %) in Brans-Dicke? theory are obtained and some of

their properties studied. These solutions, however, reduce to
those of vacuum in Brans-Dicke theory when any of the
arbitrary constants appearing there is set equal to zero, while
on the other hand one recovers the solutions of Teixeira et al.
(1977) for disordered radiation in Einstein’s theory in a nat-
ural way for the absence of the scalar field.

Goo—¢ RELATION IN THE INTERIOR AND EXTERIOR
REGIONS

For static space—time in Brans-Dicke theory one can
write from the appropriate field equation (Brans—Dicke,
1961)

8 1 1
R+~ (TH—4T) = —?fﬂﬁo—-zgﬂb (1
with
_ 87 T
3+ 2w)
where T# stands for the energy—momentum tensor of the

O¢ ()
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perfect fluid with the equation of state p = €p, being repre-

sented in comoving coordinates by
T% = pdiag(l, — €, — €, — €), € = const.

Now from (1) and (2) one can obtain the relation (see Bruck-
man and Kazes)

[((—g)(nd)*d 1, = 4cl(— )6 (Ingu)* 1, (3)
with
- Je—1 .
Qo +3)+ (0 + DBe— 1)

Now for a functional relationship g, = goo(¢ ) the relation (3)
reduces to

(4)

{(—g)l/2¢*‘[1—f—¢g°"]] —0 5)
2 gl
where

g(')o = dgw/dé and & K= g’.k¢.i'

Now defining a function of ¢ as

@)= ﬂ1-§¢g“’]d¢ ®)
&oo
Eq. (5) may be written as
(£ (—)?]i=0. (7
Again, using (7), one may write
[£6 (-] =8"E & (— )" (3)

Integrating both sides of (8) throughout the interior of the
fluid distribution and transforming the left-hand side into a
surface integral, one obtains

3§§§*( _ g)ids, = fg'kg,- £,dv. )

The left-hand side of (9) vanishes in view of (7) when we
consider the distribution bounded by an equipotential sur-
face where ¢ = const which is again equivalent to £ = const
from (6). In consequence £, = 0, since g, is negative defi-
nite and finally in view of (6), we arrive at a relation between
goo and ¢ in an explicit form such as

& = const X (gos) /% (10)
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In the matter free exterior region, where p = p =0, Eq. (1)
takes up a very simple form

1
Rg: —";(ﬁo;os (11)
which in turn gives
[g"8200.8™( — 8)'*];=0. (12)

Assuming the same functional relationship g, = goo(¢ ) to
hold and utilising the relation O¢ = O for matter free space
one can immediately obtain from (12)

(g;’:::b)’ —0. (13)

Integration of (13) yields explicitly the functional
relationship

¢ = const X (go) %, 14

¢ being an arbitrary constant here. The relations (12) and
(14) are identical with those obtained by Bruckman and
Kazes for spherical symmetry.

PLANE SYMMETRIC PERFECT FLUID-FIELD
EQUATIONS AND THEIR INTEGRATION

We consider the plane symmetric static metric in the
form

ds’ = &dt? — ePdx’ — &P~ dy + d2), (15)

where a and 3 are functions of x alone. The field equations in
Brans-Dicke theory are now

8r( (0t w_ b
¢( (2a)+3)T)e e (16)

B+ %(3(11 + B)(a: — )

Qo +3)
—w¢f/¢2+ﬂl¢l/¢—¢n/¢y 17)

a, =

Ya, —B) =27 Lo+ ) plos 1 00
2(‘211 £u) ¢[€p+(2w+3)T]e +£(ﬁ1 a1)¢,

and the wave equation for the scalar potential ¢ is

87 28
= °7 19
b Qo +3) (19
One can now utilize (16) and (18) to obtain
a, + a1¢1/¢
%(an D %(ﬂl - a1)¢1/¢
_ 1= [@+1)/Qw + 3] —3¢) 0)
€+ [(@+ 1)/Qo +3)]( — 3¢)’
the integration of which yields a relation like
Co A
= — 2o, + =, 21
B ;,;al ¢ ( )

where A is the integration constant and ¢, d, are constants
being given by
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Co= [(6‘—--1—) +i—(w—+l)—(1 ———36)]

2 2 Qo +3)
and
d, =i[1 _ o4 D 36)].
2 Qw + 3)
In view of (10) and (21) Eq. (17) can now be expressed as
Aa, + 4.0} +Ae” “Ca,+Ae =0 (22)

where A, A,, 4., A, are constants depending in general on the
magnitude of w, €, and A. The Bianchi identity i.e., 7#* =0
give the relation

1N

P=pe (23)
with k = (1 4 €)/€ and p, a constant.

Once we get a solution for a from (22),  can immedi-
ately be obtained from (21) in view of (10). It 1s not difficult
to see that the solutions thus obtained along with ¢ being
computed from (10) will satisfy all the field equations (16)-
(18) and the wave equation (19).

We do not attempt here to obtain the general solution of
(22), which is apparently not quite easy, except for a very
simple solution in the special case for 4 = 0in (21), so that
A, = A, = 0in (22). The explicit forms of such solutions are

obtained after integration of (22) in the form
e(x — (alx + az)l/h, el} — (a]x + az)m/h (24)

so that the matter density p is given by

p « (a,x + az)c(l/h — 2/¢) — Zm/h) (25)
where a,, a, are integration constants; m = — ¢,/d,,
h = Az/A 1e

SPECIAL CASE OF £ = 1/3

It may be noted from (1) and (2) that for € = 1/3 the
relation (10) is not valid and so the case of disordered radi-
ation is to be considered separately. The Bianchi identity
reduces to the relation

p=pe . (26)

One can integrate in this case Eq. (19) in view of T'= 0, to
obtain

¢ =(ax+b), 27

a and b being integration constants. Exact solutions are ob-
tained on integrating the field equations and are given in the
form

B—a ziln(l +ix) + B. (28)
a b
and
B = %m(l + %x)swz{l (1 + %x)“ 4 n]. (29)

The explicit form (29) is obtained, however, by making a
choice w = A /a, where 4, B, I, n are arbitrary constants.

It is now not difficult to see that one may get a class of
empty space { p = 0) plane symmetric solutions in Brans—
Dicke theory by setting any of /, #, and (@ — 1) equal to zero
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and they are found to satisfy the general relation (14) already
derived for empty space in Brans-Dicke theory.

We now suitably adjust the constants in (28) and (29) so
as to satisfy the regularity conditions on the plane of symme-
try. Thus @ = 8 = 0 at x = 0 and further since the pressure
gradient should vanish exactly at the central plane of sym-
metry the relation (26) shows thata ; = Oatx = O(see Teix-
eira et al.’). In view of the above regularity conditions one
hasto put n = (1 —~ /) = 5w/6(w — 1) and B = 0 and thus
finally obtain the solutions of the plane symmetric static dis-
tributions of disordered radiation in Brans—-Dicke theory in
the form

R s
X (1 + —[‘}x)sm/zl 30)
and
=
X(‘ + %")50/6} 31

1910 J. Math. Phys., Vol. 20, No. 9, September 1979

(26) now gives using the field equations the value of p, so that
a’w(w — 6)

12¢
For a particular case of @ = 6, the matter density vanishes
everywhere. (26) and (31) indicate that for @ > 6 the density
and pressure vanish as x— co whereas for @ < 6 the pressure
and density become infinitely large as x— c0.

247p, = (32)

Finally it is not difficult to show that when in the limit
the scalar field is absent, that is, when ¢ =0, which is equiv-
alent to @ =~ oo in view of the relation w = 4 /a, (30) and (31)
reduce to those of Teixeira et al.’ mentioned earlier by utiliz-
ing in (31) the well-known elementary result

Hm, (I +y/n)'=e”.

'W_.E. Bruckman and E. Kazes, Phys. Rev. D 16, 261 (1977).
*C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
‘A F. da. F. Teixeira, I. Wolk, and M.M. Som, J. Phys. A 10, 1699 (1977).
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Neutrino, Maxwell, and scalar fields in the cylindrical magnetic or plasm
universe :

David F. Cattell and M. A. Melvin
Department of physics, Temple University, Philadelphia, Pennsylvania 19122

(Received 9 October 1978; revised manuscript received 29 December 1978)

In this paper we discuss the solutions of the ¢ -number quantum-mechanical equations of neutrino,
Maxwell, and scalar fields in the background metric of a static, cylindrically symmetric magnetic
or plasm universe. The magnetic universe consists of a parallel magnetic field distribution held
together by the gravitational field of its own energy and stress. It is an exact solution of the
Einstein—-Maxwell equations for the gravitational field associated with a stationary source-free
cylindrically symmetric magnetic field. The solution does not depend specifically upon the
assumption that the seat of the energy-stress distribution is an electromagnetic field. A “plasm of
index 2" would have the same metric. The main instrument of the present perturbation theory,
valid in all algebraically special spacetimes, is the Cohen—Kegeles (CK) scalar wave equation for
test fields of helicity # (or -s). This equation, written in the updated Geroch~Held-Penrose
(GHP) formalism, is made explicit for the chosen null tetrad by determining the spin coefficients
and the operators of that formalism. Exact solutions of the CK wave equation are obtained for the
case of zero orbital angular momentum. For the case of nonzero orbital angular momentum the
JWKB approximation is used to obtain the quadratures for the orbits in the magnetic universe. It
is shown that the neutrino orbits precess about the magnetic (or plasm) universe axis in a manner

different from orbits of particles with helicity zero and helicity one. The expression for the

neutrino precessional frequency (due to nonvanishing helicity) is given explicitly. The photon
precessional frequency is twice that for neutrinos. Finally, the CK procedure is compared with
that of Teukolsky for finding the neutrino and Maxwell fields in type D spacetimes.

I. INTRODUCTION
A. The CK procedure

Cohen and Kegeles ' have considered the problem of
zero rest mass fields in a certain broad class of curved space-
times (defined in the following). They showed that the com-
ponents of certain zero rest mass fields in a fixed background
geometry can be obtained by straightforward differentiation
of asingle complex function which obeys a linear scalar wave
equation determined by the helicity of the zero mass field
and by the geometry. The Cohen-Kegeles (CK) procedure is
analogous to the Hertz—Debye potential scheme used in the
solution of certain problems in classical electrodynamics
where, of course, the spacetime is flat. For the CK procedure
to be applicable the geometry must satisfy two conditions.
First is the algebraic special condition: The Weyl conformal
tensor which is associated with the geometry must have a
repeated principal null vector (*propagation vector”); such
a geometry is said to be algebraically special. * Second is the
congruence condition: There must exist a congruence of
shear-free null geodesics along this null vector. This second
condition is automatically equivalent to the first in the vacu-
um geometries, but is an independent requirement in the
case where there are stress—energy sources (“matter”) pre-
sent. Whenever both conditions are satisfied we shall call the
geometry *principally anastigmatic.” Thus, principally an-
astigmatic geometries are just members of the generalized
Goldberg—Sachs class of spaces. ?

To envisage a principally anastigmatic geometry we
consider the cylindrical band formed by parallel transport of
a repeated principal null vector of the Weyl tensor an equal
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small proper distance in all possible directions transverse to
itself. * We do this at all points along the geodesic to which
the principal null vector is tangent and thus form a world
tube of “light rays.” If the spacetime is principally anastig-
matic, the shape of the cross section of the world tube does
not change as we move along the world tube. For example, if
the cross section is a circle at one place along the world tube,
it will be a circle at all other places and so on. The shape of
the cross section will change in spacetimes which are not
principally anastigmatic. In the following we shall discuss
and apply the treatment of the neutrino spinor field and oth-
er zero rest-mass fields by a single scalar wave equationin a
principally anastigmatic spacetime.

B. The magnetic universe as background geometry

In this paper we apply the CK procedure to a back-
ground geometry discussed by one of the authors; >® this
geometry is an exact solution of the Einstein-Maxwell equa-
tions for the gravitational field assoicated with a stationary
source-free cylindrically symmetric magnetic field. Inter-
preted in Newton-Maxwell language the solution represents
a “universe” consisting of a parallel magnetic field distribu-
tion held together by the gravitational field of its own energy
and stress. The magnetic universe solution has a number of
interesting features >’ which make it especially suitable to
serve as a test metric for new techniques in Relativity. In the
present paper we assue that there is also a neutrino field
present (or a photon field ® or a zero-mass scalar field), but
not in such strength as to affect the geometry appreciably.
Since the magnetic universe geometry is of Petrov type D,
and has shear-free congruences of null geodesics along each
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of the two repeated principal directions of the Weyl tensor
(see Appendix A), it is “‘principally anastigmatic” in our
terminology, and we can apply the CK procedure.

C. The two-component neutrino and other zero-mass
fields

Two-component neutrinos are described by a simple
spinor satisfying the Weyl equation. This equation is an ei-
genvalue equation which determines allowed energy and
momentum states associated with each of the two helicity
values which are possible for neutrinos, 4 and — 4. The
equation actually amounts to two coupled differential equa-
tions, each involving both neutrino spinor components. To
solve the Weyl equations and interpret the solutions one
must decouple the pair of two-component equations. Now
the equations themselves, originally given in Minkowski
spacetime, can easily be generalized to apply in any curved
spacetime, which, of course, is associated with an Einstein
gravitational field. The generalization consists of replacing
ordinary derivatives with covariant derivatives in the Weyl
equation (‘‘minimal gravitational coupling”). This involves
putting in extra terms involving the “spinor affine connec-
tion.” But, in curved spacetimes, the decoupling of the two
component equations is not an easy task because of the addi-
tional connection terms. The CK procedure gives a general
prescription for the decoupling in principally anastigmatic
spacetimes by deriving a single wave equation to replace the
curved spacetime Weyl equations. ! This technique makes
use of the Newman—Penrose (NP) formalism. ® In Sec. 1T we
give a brief review of the CK procedure for obtaining the
neutrino spinor field; in this review, however, we rewrite the
CK procedure in the more compact formalism developed by
Geroch, Held, and Penrose (GHP). '° With the help of the
spin coefficients (NP or GHP coefficients), and operators
calculated in that formalism, one constructs a wave equation
for a single complex function . Once found the function ¢,
differentiated, gives the spin dyad components of the neu-
trino spinor field. It is of course the case that a field of dyad
components, or a “dyad frame,” defines a unique null tetrad
frame. '° These provide two alternative reference frames for
the components of a field.

In Sec. III we discuss the CK equations for the Maxwell
field and for the scalar zero mass field. We write these equa-
tions in the GHP formalism and show that these wave equa-
tions, together with the CK wave equation for neutrinos, can
be summarized by a single wave equation where the helicity
enters as a parameter. This generalized CK equation is writ-
ten in a simplified form involving the scalar field operator
plus an addend involving the helicity.

Section 1V lists NP spin coefficients for the magnetic
universe. In Sec. V we give the wave equation for the neu-
trino “potential” ¥ and discuss the probability density. Sec-
tion VI contains solutions for the case of zero orbital angular
momentum: The wave equation is solved, and the dyad com-
ponents of the spinor field are found. In Sec. VII the solu-
tions of the wave equation, the neutrino spinor field compo-
nents, and the asymptotic probability density of the neutrino
spinor field are discussed for the case of nonzero orbital an-
gular momentum. We use the JWKB approximation to ob-

1912 J. Math. Phys., Vol. 20, No. 9, September 1979

tain an appropriate expression for the energy eigenvalues as
well as the neutrino field in the classical limit. We show that
the classical orbits of the neutrinos (i.e., orbits obtained in
the short wavelength limit) are essentially the same as those
obtained assuming the neutrinos to be zero rest mass point
particles, without helicity, moving along geodesics (dis-
cussed in Ref. 7). From the JWKB approximation to the
wave equation we show the first order correction to these
orbits to be of a precessional nature. They can be taken to
define the corrections to the motion of a classical particle
possessing helicity. Section VIII contains a brief discussion
of the scalar field in the magnetic universe and the absence of
extraneous orbital precession is shown. Conclusions are giv-
en in Sec. IX along with a comparison of the results with
those obtained by following a procedure for finding neutrino
spinor fields in background metrics given by Teukolsky.

Il. THE NEUTRINO SPINOR FIELD IN A FIXED
BACKGROUND SPACETIME

The key problem is the decoupling of the two spinor
components appearing in the Weyl pair of equations in the
case of the presence of a gravitational field. ' A necessary
condition for the applicability of the CK procedure for solv-
ing the generalized Weyl equation is that the spacetime be
principally anastigmatic (as defined in the Introduction).

We have redeveloped the CK procedure using the im-
proved formalism of Geroch, Held, and Penrose (GHP). '°
We use the GHP formalism in the procedure because the
notation is more compact and allows one to shorten the deri-
vation of the wave equation for . We devote the remainder
of this section to the derivation of the wave equation for ¢.
The spinor notation follows that of Pirani, '* Kegeles,
GHP, '° and Plebanski *

The generalized Weyl equation reads

VP, =0 Ad=1,2;X"=1,2). 2.1

Let ¢, (@ = 1,2) be the scalar projections of @, along
the dyad spinors 0 = (}), i* = (7). Equation (2.1), when
written in GHP notation, '° becomes

(0 — 1), —(P—p), =0, (2.2a)

®" —p), — (@ -1, =0. (2.2b)

If the spacetime is principally anastigmatic and the tet-
rad vector /# is a repeated principal null vector of the Weyl
tensor, we have the GHP commutator (the complex conju-

gate of Eq. (2.31) of Ref. 10) as applied to a scalar function ¢
of type {0, — 1}:

(8'P — P8 )Y = (r'P — pd' ), 2.3)
which may be rewritten
(0 — by — (P —p)d'y=0. (2.4)

Equation (2.2a) will then be satisfied automatically if
we define a single complex scalar field ¢ such that

6 = — by, 2.5)
¢, = —08'Y, (2.6)
and (2.2b) becomes
(P —p)P — (8 —-78TY=0. 2.7
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The definition of ¥ by Eq. (2.5) and (2.6) is consistent
with the spin- and boost-weights of ¢, and ¢, given in Ref.
10. Once (2.7) is solved for 3, the dyad components of the
neutrino spinor field can be found by using (2.5) and (2.6).

At this point we should note that Teukolsky '' has given
a procedure for finding the solutions of Eq. (2.2a) and (2.2b)
in type D spacetimes (the magnetic universe is a type D
space-time as explained in Appendix A). This procedure
involves solving two decoupled second order partial differ-
ential equations for the spin dyad components ¢, and ¢, of
the neutrino spinor field. In the procedure discussed above it
is necessary to solve only one second order partial differen-
tial equation (2.7). Furthermore, (2.7) is valid for a wider
class of spacetimes than are Teukolsky’s equations, in that
the Weyl tensor associated with the spacetime only need be
algebraically special, whereas the requirement for the valid-

ity of Teukolsky’s procedure is that the spacetime be type
1

Further advantages of the CK procedure over Teu-
kolsky’s are discussed in Appendix D, where a simple exam-
ple is given.

We again note that it is assumed in the CK procedure
for solving the Weyl equation that the neutrinos themselves
do not alter the background geometry. This should be a good
approximation, except under conditions such as in the early
stages of the universe in a “big bang” theory.

Ill. THE MAXWELL AND SCALAR FIELDS IN A FIXED
BACKGROUND SPACETIME

In this section we write the source-free Maxwell field
equations in GHP notation. We then give the CK equation
for the Debye function ¢ of the Maxwell field and the pre-
scription for finding the Maxwell field spinor by differentiat-
ing 3. Next we give the scalar field equation in GHP notation
and show that the neutrino, Maxwell, and scalar field equa-
tions for the Debye function ¥ can be generalized to a single
wave equation where the helicity of each specific field enters
as a parameter.

Maxwell’s source-free equations, when written in GHP
notation, are

bg, —8'¢dy = — 7'dy + 2pb, — k95, G.1a)

bP¢, —8'¢, =a'd, — 279, +pd,, (3.1b)
together with their primed versions (the prime operation is
defined in Ref. 10).

Equations (3.1) are the analog of equations (2.2) for the
neutrino field. Here the scalars ¢,,4, , and ¢, are projections
of the symmetric spinor @, which is related to the Maxwell

field tensor or spinor. The projections are onto the dyad i4,0*
defined in Sec. IT:

¢0 —:—voBd)AB ’ { 2’0 } ’ (323)
¢, =0""®,;, (0,0}, (3.2b)
¢ =i"i"®,,, | —2,0}, (3.2¢)

where the numbers in brackets are the {p,q} types of the ¢ ’s
(Ref. 10).

The symmetric spinor @, is related to the Maxwell
spinor Fp 5. F,, (A4 '<u, BB'<v) by '°

Fipap =Pup€yp + €Dy,

(3.3)
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where €, is the Levi-Civita alternating symbol. '*

Cohen and Kegeles have shown '* that (3.1) and their
primed versions can be decoupled in principally anastigmat-
ic spacetimes when one takes the tetrad vector /* as a repeat-
ed principal null vector of the Weyl tensor. We give the CK
results rewritten in GHP notation.

The dyad components (3.2) of @, are given by

$o = — (@ —p)P +p), (3.42)
¢ = — [P +7)— (T — )P+ (3.4b)
¢, = —[@ — Q@ +7)+ @ +p)l¢. (3.4¢)

The scalar ¢ (or type {0, — 2}) satisfies the equation

(P~ p' )P +p) — (@ —7)8 + )]y =0. (3-5)

Once (3.5) is solved for ¥, Eq. (3.4) can be employed to
find the ¢ ’s. Equations (3.2) and (3.3) may then be utilized to
find the Maxwell field tensor from which one can read off the
electric and magnetic fields.

The original derivation of (3.5) by Cohen and Kegeles
may be found in Ref. 13.

We conclude this section with a discussion of the field
equation for scalar quanta of zero rest mass. This equation
will be used in Sec. VIII to show that the additional orbital
precession of neutrino orbits in the magnetic universe is due
entirely to the neutrino’s nonvanishing helicity.

Using the telescoped GHP notation of Ref. 15, the wave
equation for scalar quanta may be written as

(Ao +43)¢ =0, (3.6)
where ~

A, =P'P —p'P —pP’ (3.7a)
and

A= —083+78+ 70 (3.7v)

Substituting Eq. (3.7) into (3.6) and taking the complex
conjugate of the result gives

(B —p )P — (8 —7)8 — (pP' ~d)l¥y=0, (3.8)
where here 4:{0,0}.

We note the similarity of Eqs. (2.7), (3.5), and (3.8).
Cohen and Kegeles ' have pointed out that (2.7) and (3.5)
together with the equation for gravitational perturbations

(not discussed here) can be summarized by an equation
which we rewrite here in GHP notation:

{® ~p)[P — (25 + Dp] — (@ — D[’ — 25+ 7]

—(+ D@+ D} =0 ¢:{02), (3.9
wheres = — 1, — 1, or — 2 for neutrino, Maxwell and
gravitational perturbation fields, respectively. ¥, is an NP
component of the Weyl tensor and is defined in (A 1). It is the
only nonvanishing component in type D spacetimes.

If we substitute s = 0 in (3.9), we get
[(® —p)Y® —p)— (@ —1)8 —7)— &, ¥ =0.
(3.10)
Using Egs. (2.16) and (2.26) of Ref. 10 (complex-conju-
gated) this equation can be written in principally anastig-
matic spacetimes as

[ (B —p)P — (@ — 78 — (pP' — 78) + LR | Y
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=0, 3.11)
where R is the Riemann curvature scalar.

(3.11) agrees with (3.8) except for the extra term LR.
For spacetimes where R = 0 (i.e., for spacetimes with a
trace-free stress—energy tensor, like the magnetic universe
and vacuum spacetimes), no ambiguity can arise in using
(3.8) to treat scalar particles. For spacetimes where R does
not vanish Graham '’ gives an argument for retaining this
extra term. We may call this term an effective mass for the
test particle in a gravitational field.

IV. THE CYLINDRICAL MAGNETIC UNIVERSE AND THE
SPIN COEFFICIENTS

The cylindrical magnetic universe >’ is an exact solu-
tion of the Einstein—-Maxwell equations for the gravitational
field associated with a stationary source-free magnetic field.
This hypothetical universe consists of a bundle of parallel
magnetic field lines held together by their own gravitational
field. Further discussion can be found in Refs. 5 and 7. The
reason for working with this solution here is threefold. First,
it is mathematically simple and serves as a good illustrative
example of a spacetime for which the Cohen—Kegeles proce-
dure for finding the neutrino spinor field is applicable. Sec-
ond, there exist magnetic fields which are very strong (neu-
tron stars) or very extensive (interstellar and perhaps
intergalactic magnetic fields) and it is of interest to know
how they affect the motions of elementary particles; some
inferences may be drawn from our results. The third, and
perhaps the most important reason, is that the solution illus-
trates effectively how the helicity of the neutrino interacts
with the background geometry to modify the orbits from
those obtained assuming neutrinos to be zero rest mass point
particles following well-defined trajectories. This effect ap-
pears to be quite general and is discussed in Sec. VII below.

In this section we give the line element for the magnetic
universe and the null tetrad used. The spin coefficients and
the NP and GHP operators are given.

The line element of the cylindrical magnetic universe
is”

ds? = Widt? — Wdrr — (v/W)ds* — Widz> (4.1)
(i=c=1,t=x" r=x', ¢=x% z=x% W=1+1r),

corresponding to a sourceless electromagnetic field with
only
F,=—-F, = Byr/W?*+0. 4.2)

Implicit in this expression is @, a real-valued natural scale
length (the “range radius”) of the magnetic universe. * The
coordinates ?, 7, and z, and the time-space interval ds are all
expressed as multiples of the fundamental length. '*
Following Newman and Penrose ° we introduce four
linearly independent 4-vectors I *,n*,m",m* satisfying

(4.3)

All other inner products between these vectors vanish.

[# and n" are real and m* is complex. A bar above a
symbol indicates complex conjugation, unless noted to the
contrary.

We take the tetrad to be

o Pt —
Ln=1, mm' = —1
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1 aW

M= ——— (1,00, — 1}, I,= 2241001}, (44a)
aVaw ' 2
I aw
W= ———— (1,001}, n,= 271100 —1], (44b)
aVaw RV
. 2 -_— .
mt= L lo,—l,’—W—,ol, m, = “W{o,l,:#,o}.
aVaw r W

V2

(4.4¢)

In Appendix A it is shown that /* and »n* are repeated

principal null vectors of the Weyl tensor classifying the mag-
netic universe as Petrov type D. ?

The spin coeflicients, which can be calculated by a pro-
cedure given in Appendix B of Ref. 13 are found to be

Vaa

k=0, 0=0, p=0, 7=

’

WZ
(4.52)
B= 1 —(’2—21)’ c—0
araVa2 W
and
K=0, 0’=0 p'=0 7= M,
WZ
(4.5b)
Br: 1 _ (rz_zl)’ €l=0.
anVar W
The NP directional derivatives along the tetrad vectors are
1 1
D= —+(d, —-3d.), D'= =(d, +d.),
awV2 awV2
(4.62)
172
5= _1—_(—3, + ﬂ/—aé),
awV2 r
2
5 —5— _1__( _a, _,'LV_%),
awV2 r

and the GHP operators are'"
by = (D —pe—qé€)y, Pn=(D'+pe+qEm,
(4.6b)
3 =8 —pB+gByn, &= +pB —ab)m,
where 7 is any scalar of type {p,q}.
These and the only nonvanishing component of the
Weyl tensor (Appendix A),

2 -1
1/’2:—_3 4
a W

are needed to make Egs. (2.7) and (3.9) explicit.

“.7

V. THE WAVE EQUATION FOR ¢, THE NEUTRINO SPIN
DYAD COMPONENTS AND THE NEUTRINO
PROBABILITY DENSITY

The wave equation for ¢ (2.7) can be written as

(D' +€ —pYD+E)—(@E+B—X5 +B) =0,
6.1
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where Egs. (4.6b) and the fact that ¢ is of type {0, — 1} have
been used.
Making use of (4.5) and (4.6a), (5.1) becomes

Fy P ¥ (@_ 572_¢)

aor rWo or g 92
wht Py i3 =DWap | Pl )w 0
P 3g° r a  rw?
(5.2)
where W= 1+ r2and ¥, (=13r* - 10r* — 1).

We assume # to be of the form

U(tro,z) =

— fwi imd (k2
R, ,»(P)e "%

((1)>0, m= O’ =+ lv * 2)'")‘ (53)

This separation of variables is quite natural and is discussed
in Sec. VIII below.
The equation for R (r) Is

4,2

TR
r

— &Z;UWWI + ’ll;;/( ))sz(r) 5.4

r2

Using Egs. (4.6a) and (4.6b) together with (5.3), (2.5)
and (2.6) become

I (w+k)
b, = — 2, (5.5a)
a2 W
b= L (Rf/z~mW2__l_(r2—l))w
2 NEW\ R, r 2r W ’
(5.5b)

where a prime indicates differentiation with respect to r.
Making the substitution
R, (1) = (W /n'"?Q(r) (5.6)
in (5.4} we obtain an equation where no first derivative term
appears:
Wim* (3 —1
7 7

0"+ (2~ Lwim)o ) =
(5.7)
where A ‘=0’ — k2.
The spin dyad components (5.5a) and (5.5b) become

¢1 — l(w + k) Qe it 1m¢ell\z

Y (5.8a)
N2V w
1 Q' mw? it jimd ikz
¢, = = - Qe ~ e
aNVow ( r )
(5.8b)

In accord with (9.2) in the following the formal curved
space probability density for neutrinos is
() =V [detg,, | (16, + 16,V 2aW, (5.9)

where g, is the metric and /, = 1, 2, 3. For the magnetic
universe with metric given by (4.1) we have

V |detg,, | = a*rw? (5.10)

1915 J. Math. Phys., Vol. 20, No. 9, September 1979

and

_ aw? 5 Q_'_ mWw?
P = VE((w+k) +( ;

e

5.1

We shall require that p(r) given by (5.11) not diverge in
the domain 0<r < «c. We will seek solutions of (5.7) that
satisfy this condition. For bound states [p(r)—0, r— ] we
make the stronger requirement

f P()dr < o
[¢]

so that the neutrino spinor field can be normalized.

(5.12)

VI. THE CASE OF ZERO ORBITAL ANGULAR
MOMENTUM

This section deals with the “meridian plane” orbits of
Ref. 7, treated quantum mechanically for neutrinos. In what
follows the wave equation for this case is solved, the neutrino
spin dyad components are found, and the neutrino states are
analyzed.

In this case m = 0 and (5.7) becomes

Q'(N+4 2Q(r) =0 (m=0),
where A =w? — k2
For the case/{ = 0(w = + kcorresponding to neutrino

motion parallel to the axis of the magnetic universe’). (6.1)
further simplifies to

Q"(n=

with the general solution
Qr)=ar+b (m=0, =0, a,b constants). (6.3)
For the case 4540 the general solution of (6.1) is

6.1)

(6.2)

Q(r) =Ae"" + Be """ (m = 0,A5£0,4,B constants).
6.9
In either case Egs. (5.8) become
¢, = —’(—a.)_—Jr—k);—Q (Pe ~"e* (m =0), (6.5a)
a"\/2\/rW
b= ——=———==Q'(Ne e*, (m=0). (6.5b)

) 5'\/2\/rW

Now the 2 X 2 spin matrices Ul’j“' connecting the spin
dyad frame with the orthonormal frame can be determined

m——(f H—O’ZZ

12
m,=o,", s W (6.6)

where the tetrad vectors are given by (4.4) and the upper
indices indicate dyad components.

Use of (4.4) and translating from dyad to spinor compo-
nents in (6.6) gives

. awf{l O . aw {0 1

”7’“1:\/_5(0 1)’ ot IV—;(l 0)’
o (0 =) (10
B Z2VZ AR VA

6.7)

Considerthecased = 0,w = + kwhen Q (r)isgivenby
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(6.3). In order that the neutrino probability density (5.11)
not diverge as r—oc we must set @ = 0 in (6.3). Then if
@ = k, Eqgs. (6.5) become

1\/2a)

é] —— enu(: - 1)
(7\/ rw
6, =0 (m=0w=k),
or in standard notation
Vi (1N
o, = V20, (O)e 0 (=0, w= k).

aVvorw

(m=0,0 = k), (6.8a)

(6.8b)

(6.9)

This solution corresponds to neutrino motion parallel
to the z axis of the magnetic universe in the + z direction.
The solution is an eigenstate of o#? given in (6.7) with eigen-
value +aW/(2)'">.

The nontrivial solution for neutrino motion in the — z
direction may be obtained, reworking the problem, by mak-
ing the interchanges

[, —n m, om .

(6.10)

in the NP formalism. (This corresponds to interchanging
unprimed with primed quantities in GHP.) In this case —z
replaces z in (6.9) and the spin state now has an eigenvalue
—aW /(2)'? of %" In each case one obtains null results
upon looking for neutrino motion in the opposite z direction.

For the case A0 Q (r) is given by (6.4). Equations (6.5)
then become

I

l(a) + /‘) (Aemr - uulezkz_'_ Be— l/lre — iwt xkz)

¢, =
67\/2\/rW
(6.11a)
¢ ia (Aemre - imlezkz — Be~ 1Ar€ — it ll\z)
i E\/Z\/rW
(6.11b)

In the case & = O (upper sign B = 0, 4 =C; lower sign
A =0, B=C), Egs. (6.11) simplify to

iw

¢1 Ceuu(+r 1) (m:O,k:O),
5\/2\/rW
(6.12a)
+ iw G
(ﬁz = = Ce' =) (m= 0,k = 0),
&'\/2\/rW
(6.12b)

or

D, = _—_’—“’T_—C( ! )ei"’(i” o, (6.13)
aVavew NE1
where the coefficients 4, B, and C are constants.

The solution corresponds to neutrino motion directed
radially (plus: outward; minus: inward) with respect to the
axis of the magnetic universe. It is an eigenstate of o ® " given
in (6.7) with eigenvalue + aW /(2)'* (—aWw /(2)'/?.

The most general meridian plane state given by (6.11)
with A, B, k, and A nonzero corresponds to a superposition of
neutrino motions of the individual states in the subcases dis-
cussed above.
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Since the meridian plane states (m = O states) are un-
bound, the constant prefactors appearing in the separate so-
lutions (6.9) and (6.13) may be fixed by any sort of standard
normalization, such as either box or delta function
normalization.

The individual solutions (6.9) and (6.13) indicate a typi-
cal feature of the Cohen—Kegeles procedure, namely, that it
leads directly to the neutrino spinor states. This is further
discussed with a simple example in Appendix D.

Finally, we note that we are dealing with neutrinos of
positive helicity, since in each of the subcases discussed
above the neutrino’s motion is in the same direction as its
intrinsic angular momentum.

Vil. THE CASE OF NONZERO ORBITAL ANGULAR
MOMENTUM

In this section we discuss the nature of the solutions of
(5.7) for the case m=40. In subsection A behavior of these
solutions near » = 0 and as #— oo is given along with the
asymptotic neutrino spinor field components. The asymp-
totic probability density of the neutrino spinor field is then
given. It is deduced that bound neutrino states exist, and the
reason for their existence is discussed. In subsection B use 1s
made of the JWK B approximation to obtain an approximate
expression for the energy eigenvalues and a comparison with
the classical orbits of Ref. 7.

A. Behavior of Q(r) and the asymptotic neutrino spinor
field

Q (r) satisfies the differential equation

Q"N+ 7N =0 (7.1)
where
A=A — Wim: _ Gr - D wm (7.2)
¥ r
andA2=w?—~k? W=14r.

Near the origin

Q) =ay "+ '(1 +

[A?—4m(m + )] ERIAN
4(m — %)

[A2%—d4m(m + 1))
4m+3)

+ aor’"(l ¥4 (r“)) (7.3)

(r—0, a;, a, constants).
Asymptotic solutions are of the form

20~ = sg] (2 )|

|- ()
.

el ()
+d0r'"exp( 2 +m + 4mr2+ =
(7.4)

(r—w, ¢y, d, constants, m==0).

Physically acceptable solutions must have d, = 0 in
(7.4)and a} = 0in (7.3) so that the probability density (5.12)
remains finite in the domain O<r < oo when m > 0. For the
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case m < 0, we must have ¢, = 0in(7.4)and @} = Gin (7.3).
The asymptotic neutrino spinor field (5.8) for the case
m>0is

1 4
¢1 ~ l—(a)_i_k—_)_ri(m+3)exp|: —( mr +mr2)]
aVaVw 4
Xe ™ et (m>0,r—c), (7.5)
— , 3
¢ #\/2 (mW +E),—(m+3)
i (7\/rW r
4
X exp( _ ( m4r + mr2>>e imteimcéeikz
(m>0r—w). (1.5b)

Equations (7.5) clearly indicate the existence of bound states
for the case m > 0.
The asymptotic neutrino probability density is, from
(5.11) and (7.4) with d, =0,
(nW? + 2y
2

aleOI'WH r—2(m+3)

[(w+k)2+4

X exp[ -( m; + 2mr2)] (m>0r—>x). (7.6)

Results analogous to (7.5) and (7.6) are obtained for the
case m < Q.

The strong exponential damping factor in (7.6) and the
condition aj, = 01in (7.3) guarantees that the condition (5.12)
1s satisfied.

The existence of bound states in a consequence of the
fact that the cylindrical magnetic universe is not asymptoti-
cally flat. ° In fact, the rapid fall off of ¢, and ¢, can be
attributed to the “tight belt” of the geometry of the cylindri-
cal magnetic universe, since the — m?r° behavior of % *(r)
in Eq. (7.1) as r— oo can be traced back to the coefficient of
d*Y/3¢? in the unseparated wave equation (5.2) for the
complex scalar function .

B. Approximate eigenvalues and the classical orbits
Physically acceptable states exist if and only if
Asdmm+ 5, m=+1,+2,+3, (7.7

For the case m = 1 27 *(r) defined in (7.2) has one real
positive zero which we denote by a. In this case the eigenva-
lues are approximately determined by the condition

J (A2 =+ 4% 4+ 97+ 6)]"%dr
0

=(n+H7r (m=1,n=0,1,2,-.). (7.8)

For the cases m > 1,m <0, 77 *(r) has two real positive
zeros which we denote by ¢ and b where a < b. In this case the
eigenvalues are approximately determined by the formula

b 4.2
f (/12_ Wrzm _ (3r2r2— 1) Wm)l/zdrz(n+%)7r

(1.9)
(m>1lorm<0,n=0,12,).

Appendix B contains a summary of the JWKB func-
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tions for (7.1), their regions of validity, and the eigenvalue
spectra of A for the cases m = 1 and m=~0 or 1.

If we define
E=%w, P=fk, L=fim, U=#, (7.10)

where # is Planck’s constant divided by 2+, then it is shown
in Appendix C that the surfaces of constant phase of the
neutrino spinor field move along trajectories determined
from

E

t= —

2

« J" dx
s [U — (1 4+ %)L — (3x — D(x + DAL |7
(7.11a)

g dx
>< b
j (U — (1 +x)*L?—Gx — D(x+ DAL 12

, (7.11b)
aszif 1
2 Jr x

[ 4+ x)*L + 33x — )(x + 1)#ildx
[U2x — (1 4+x)*L?— (Bx — 1)(x + DAL ]2
(L£0), (7.11c)

where r,, is a suitable point in the r plane.
The trajectories of a classical point particle (without
helicity) in the magnetic universe are given by ’

e EJ dx , (7.122)
2 Jr [Ux— (1 +x)*L2]""?
z=2 dx : (7.12b)
2Jn [U —( +x)*L2]"?
r 4
gL ("1 __ (txax (7.12¢)
2 roX [sz—(1+x)4L2]l/2

As explained in Appendix C, the principal difference
between Eqs. (7.11) and (7.12) is the presence of a precession
not present classically. To first order in #, the neutrino orbits
precess (as compared with the classical orbits) with
frequency

0.= L aronren
>

2E,
provided L=£0. (7.13) is derived in Appendix C.

(7.13)

VHI. THESCALARFIELD INA CYLINDRICAL MAGNETIC
UNIVERSE

In this section we determine the wave equation for a
zero rest mass particle without helicity in a cylindrical mag-
netic universe using the GHP formalism as outlined in Ref.
10. We find that the precessional corrections discussed in the
preceding section are absent. This shows that these are due
entirely to the helicity of the neutrino.

The wave equation for the scalar field ¢ has the form
(3.6,

(Ay+40)¥ =0, (8.1)
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where the operators 4, and 4 , are defined in (3.7).
Using (4.6b) together with the spin coefficients (4.5a)
and (4.5b) we get

A() =D'D, (82)

. \/—r -
L_(A=ns, V276, 5),63)
aVa W’ w?
W =1+ r? and d is a scale length of the magnetic universe

defined in Ref. 5.
Use of (4.6a) then gives

A= — 86+

9 1 2 2 4 2 N _
(__7+__8__ 8’ 8+W 8)1/}:0.
ar radr  ot* 9z P a9’
(8.4)
Setting
tZ(t,r,d),z):Ro(r)e i(u/ei/mbeil\z (85)
we get
d’R dR 42
o L5 e -k - PR =0
dar’ r odr
(8.6)

for the radial equation.
For the meridian plane (n = 0) orbits the solutions of
(8.6) are of the form

Ry(r) = AJyAr) + BY,(Ar) (A150), (8.7a)
R(H=Cnr+C, (A=D0), (8.7b)

where J, and ¥, denote Bessel functions of order zero,
A?=w>—k? and 4, B, C, and C, are constants.

To employ the JWKB approximation we make the
substitution

Ry =0/ Vr (8.8)

to obtain a differential equation with no first derivative term:

W*m? 1
i ;;)Qo(r) —0.

At this point we note that the precessional correction to

(8.9)

Qi)+ (17—

QUANTUM MECHANICS

A

the classical neutrino orbits as derived in Appendix C is due
to the appearance of the term linear in m in (5.7). No such
term appears in (8.9) and it should therefore be concluded
that zero rest mass, zero helicity particles do not have a
precessional correction in the classical limit. This establishes
that the differences between Eqs. (7.11) and (7.12) are due
entirely to the helicity of the neutrino.

iX. CONCLUSIONS

In this section we summarize the contents of this paper
and discuss the major results. We first give a condensed re-
view of the formal steps which comprise the Cohen-Kegeles
(CK) procedure. We then discuss briefly the momentum op-
erator in curved space. This leads to a motivation and valida-
tion of the wave function separation (5.3). Three zero rest-
mass fields are then compared: the scalar, neutrino, and
Maxwell fields. We compare the radial equations for each of
these cases and deduce the presence or absence of orbital
precession. A detailed summary of the results for neutrinos
is subsequently given along with an enumeration of the dif-
ferences between the CK and Teukolsky '! procedures.

The CK procedure may be summarized as in Fig. 1
where arrows indicate the logical order of the formal steps
which lead to the solution of the Weyl equation in the gener-
alized Goldberg-Sachs class of spacetimes. We explicitly
note that we need not have a vacuum spacetime for the CK
procedure to be applicable (as indeed the cylindrical magnet-
ic universe is not a vacuum spacetime), but merely that the
spacetime admit a congruence of shear-free null geodesics
along the repeated principal null vector of the Weyl tensor (a
“principally anastigmatic” spacetime). Two other condi-
tions must also be met, namely, that the neutrinos are not
present in such strength as to affect the background geome-
try appreciably and that the only influence on the neutrinos
is gravity.

The CK procedure is discussed in detail in Sec. 1T above
and a simple example of the procedure outlined in Fig. 1 is
given in Appendix D below.

A discussion of elementary particles moving in an arena

RIEMMANIAN GEOMETRY

Metric (given)

Weyl tensor with at least one

H =
OABVUQ 0
| S l
Use of GHP formalism to Anticommutation
write the Weyl equation in terms Relations repeated principal null vector.

[oMoV], = gHV1

4

of an arbitrary spin dyad frame.

Representation
for
aH
Possibility of decoupling com-
ponents by defining a complex scalar

Choice of spin dyad frame (é) ,(8)

4—————— and NP null tetrad with £H a principal

null vector.

Yy which satisfies a single wave equation. 4

K, 0, q)o, and wl vanish.

Spin dyad components of neutrino
4 spinor field given by applying known
differential operators to Y.
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of a curved spacetime background does not seem complete
without reference being made as to what one uses for mo-
mentum operators under such conditions. We make use of a
prescription discussed by Pauli '° for nonrelativistic scalar
particles which may readily be extended to relativistic parti-
cles with spin or nonzero helicity.

The following assumptions are made:

(DX = X, = — S

1y
QKLY =<WV /,¥>, pv =123

where x* and 4, are conjugate coordinates and momenta,
respectively.

&, is the Kronecker delta and the brackets in (2) refer
to the expectation value of the operators 4, (for any given
state ¥).

¥ is interpreted as the probability density for locating
a particle with wave function ¥. However, the probability
density p is not invariant under coordinate changes since the
volume element d¥ is not. It can be shown %° that DdV,
where D = (|g|) '/? and |g| is the determinant of the metric,
is an invariant. Thus if one requires that ¥¥ be an invariant
we should have in the general case

p = DVWY. 9.1
[In the case of a two-component neutrino field
pP= ZD(EB 'O'SB‘¢A’ 9-2)

where od? for the tetrad used in this paper is given in (6.7).]
The expectation of 4, in the state 1 is then

W W= fDW(//,W)dV, 9.3)

where the integration is to be taken over all space.
Requiring that (2) hold and assuming the absence of a

vector potential (which would be present with an electro-

magnetic interaction) one finds that for suitable boundary

conditions !* imposed on the state ¥,

9.4)

o1 AN
Jon = —zﬁv—:—\/DlI/ (1 =1.2,3).

D ox*

The literature on momentum operators (and Hermitian
operators in general) in quantum mechanics in curvilinear
coordinates and curved space is very great. Podolsky *' ar-
rives at (9.4) in a manner different than Pauli,

Assuming the prescription (9.4) for 4, holds in the
magnetic universe with metric given by (4.1), one finds that

a

gy = — [ —— 9.5
/6 I ey (9.52)
S = — iR i (9.5b)

Jz
If we further assume that

ad
b = — i — 9.5
/ (O (9-5¢)

is equivalent to the Hamiltonian, particle states in the mag-
netic universe must be of the form

¢(t,r,¢,z) — Rh (r)e — iruleimd'eikz (96)

in order to be simultaneous eigenstates of the mementa # .4 ,,
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and 4, . This justifies (5.3).

The correctness of (9.6) or (5.3) is borne out further
when on examines the classical limit of scalar particles, neu-
trinos, and photons. We have primarily dealt with neutrinos
in the paper but we have also briefly considered scalar parti-
cles in Sec. VIII above. This was done to verify that the
precessional corrections in the neutrino orbits (for nonzero
m) is due to their nonvanishing helicity. Indeed, scalar parti-
cles show no such corrections.

Below we give the equation for the radial functions
R, () (h =0, 1, 1, for scalar particles, neutrinos, and Max-
well fields, respectiely.) If 7540, a term linear in m appears in
the radial equation in the coefficient of the last term, and as
explained in Sec. VIII, this leads to precessional corrections
in the classical limit.

Using Egs. (4.5), (4.6), and (4.7) in the general CK
equation (3.9) and applying separation of variables we find
that the radial function satisfies

d’R, [ (4h—1)r —1]4R,

dar rw dr
Wim* 2mm@Br—1) 2.0
+ /{ 2 - - + R = 0)
[ P r Wl

.7

where 1 '=w? — k2, W=1+r%and 2, (r) = 3h
— 2h (h 4 2)r* — k> (In this notation — A replaces s).

For neutrinos, & = : &2, ,, () = 43r* — 107 — 1).

For Maxwell fields, # = 1, in a (nonelectromagnetic)
“plasm of index 2” universe:* ./’ | (r) = 3r* — 6r? — 1.

As is evident from Eq. (9.7) and the discussion in Ap-
pendix C, the precessional frequency for photons is twice
that for neutrinos as given in (7.13).

For meridian plane orbits (m = 0} (9.7) becomes

d’R, ( (@h—1r —1 ) dR, 75"
dr rw dr 2

R, |=0.
(9.8)

If in (9.8) we make the substitution R, = WG, (no
sum implied) we find that G, satisfies

d°G dG 2
e, 1 h+(/12——h——)6,,=0.
dr’ r dr r

This is Bessel’s equation of order 4. If 1540, the general

+[/12+

9.9)

_ solution of (9.8) is therefore

R,=W"Z,(Ar) (no sum implied), (9.10)

where Z, denotes a general cylinder function of order .
For the case m = 0,4 = Othe general solution of (9.8) is
(8.7b),

Ry(r) = CIn(r) + C, (9.11a)

or
R, (r) = C{(Wn)" + C(W /1" (h5£0),

where C,, C,, C,, and C, are constants.

Equations (9.11) represent particle motion paraliel to
the magnetic or plasm universe z axis.

The results of the paper for neutrinos specifically may
be summarized as follows. The energy eigenvalue spectrum

(9.11b)
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1s continuous for the meridian plane case (m = 0) and dis-
crete otherwise (m=~0). The existence of bound states for the
case m=-0is due to the fact that the magnetic universe is not
asymptotically flat. The fact that a spacetime which is as-
ymptotically flat cannot in general give rise to bound neu-
trino states was emphasized by Brill and Wheeler. ** In con-
trast the fact that a spacetime is not asymptotically flat does
not, of course, guarantee that all neutrino states will be
bound, as 1s evidenced by the meridian plane orbits.

In comparing the neutrino orbits in the classical limit
with the orbits calculated from a completely classical stand-
point one discovers a precession for m=£0 that is not present
classically. As explained above, this precession is due to the
nonvanishing helicity of the neutrino.

Since the magnetic universe is Petrov type D (cf. Ap-
pendix A) one may also solve the Weyl equation in the space-
time using a procedure given by Teukolsky. '' The CK pro-
cedure turns out to be somewhat more straightforward as is
generally the case (cf. Appendix D). By way of comparison,
we list below the four major differences between the Cohen—
Kegles and Teukolsky procedure.

(1) The CK procedure is valid in all principally anastig-
matic spacetimes whereas the Teukolsky procedure is valid
only in type D spacetimes. '

(2) The CK procedure solves explicitly for the spinor
components as well as their spacetime dependence whereas
Teukolsky’s procedure yields only the spacetime depen-
dence explicitly and requires another step to determine the
ratio of the spinor components. This is illustrated in Appen-
dix D below.

(3) The CK procedure involves the solution of one dif-
ferential equation whereas the Teukolsky procedure in-
volves the solution of two. We note that the two Teukolsky
equations may be identical, or the second may be obtainable
from the first by simply changing the sign of a parameter. In
general, however, this may not be the case.

(4) Because of the nature of their derivation, the solu-
tion space of the Teukolsky equations is generally larger
than that of the original Weyl equations. For this reason
solutions of the Teukolsky equations must be substituted
back into the Weyl equations to check on their validity. This
1s not necessary with the CK procedure.

APPENDIX A

In this appendix the NP Weyl tensor components are
defined and calculated using the tetrad (4.4). /, and n, are
shown to be repeated principal null vectors of the Weyl ten-
sor classifying the cylindrical magnetic universe as Petrov
type D.°

The NP dyad components of the Weyl tensor C, 5., are
given individual symbols as follows: ’

37 730,0
ll/() = - C{x/f;/bl (Im/ ["m ’

W, = — Cp ol WPl 7m?,

Y, = —3 (1/37/15([ “pPlip® — lrlnﬁmr’%b)r (AT)
Y, = — Caﬁ],(gt;z—”nﬂl "n®,

(1/4 = - C/t/t‘)'h’;”nﬁ ’;7/’1{5'

If the only nonvanishing NP dyad component of the
Weyltensoris ¥, , then /* and n * are repeated principal null
vectors of the Weyl tensor. > This is now shown to be the
case.

The coordinate frame components of the Wey! tensor
for the cylindrical magnetic universe are

- _ r4(r2 _ 1
Corgr = 287" = 1), Coppy = 2d° —(T-_F—Vz)_o')’
4
Cozpn = — 480 = 1), Cp,, =47 21("—?—_’)14)’ (A2)
r
4 2
Ciay= = 2807 — 1), Cyy= -2 =1 1).
| 1+

All others not obtainable from the symmetries of the Weyl
tensor vanish. Use of (4.4) and (A2) in (A1) gives by straight-
forward calculation:

¥, =0,
v, =0,
R Gl VY (A3)
a (1+°
v, =0,
Y, =0.

This establishes the desired results, namely that /# and

TABLE L.
m=1 m=£0,1
Restriction >6 >dm(m + 1)
ond -

Real Positive One called “a”

Zeros of .7 (r)

Two called @™ and 6™
witha < b

JIWKB i exp( _ } f,//f(g )dE ),(r>a) _ exp( _ { J EE ’) (r>b)
RZGINS u G s
functions _ cos[ J,Z)(_é“ s | — —Tr—],()gr<a —_— 2 N cos” j,%’(g Ydé l — 1] a<r<b
A7 u 4 G o 4
Eigenvalue spectrum Discrete Discrete ,
of A (7.8) A(dr = (n + P 7.9 f A(dr = (n + ),
(¢ i
n =012, n =012
Region of validity
of the JWKB Everywhere Everywhere except r =0
functions
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n' are repeated principal null directions of the Weyl tensor
and that the magnetic universe is Petrov type D.

Further, since «, o and «', ¢’ are all zero we also have
that /* and n* are the tangent vectors of shear-free null geo-
desics. Since both the algebraic special condition and the
congruence condition are satisfied, it follows that the mag-
netic universe is principally anastigmatic.

APPENDIX B

Table I contains a summary of the JWKB functions for
(7.1), their regions of validity, and the eigenvalue spectra of
A. The table lists this information, together with the number
of real positive zeros of Z(r) [defined in (7.2)], for the cases
m = 1and m=£0or 1. (For the case m = 0, the exact solution
is given in Sec. VI).

APPENDIX C

In this appendix we determine the orbits of the surfaces
of constant phase of the neutrino spinor field in the short
wavelength limit. These are the orbits the neutrino would
have if it were a well-localized point particle. We show that
the orbits are similar to those of a classical point particle
(without helicity) but possess a precession not found classi-
cally when m=0.

We define the following:

E=tw, P=fk, L=#m, U=H. (83))]

A suitable approximate solution to (7.1) in the short
wavelength limit, is the standard JWKB function

00 = Wexp(z‘ [ #e) C2)

provided we are not too close to a zero of Z7(r) (a classical
turning point).
We can also write

f //(\/g)

f%@ )dE = (C3)

as can be verified by dlﬁ'erentlatmg both sides of this expres-
sion with respect to r.

Using (7.2) and (C1) in (C3) we get, changing the dum-
my variable of integration from & to x,

Jr;/’/;(g)dg - z_lﬁf %[sz-a +x)°L?

— Bx — 1)1 + x)AL 1V dx. (C4)

The dyad components of the neutrino spinor field are
given by (5.8a)

- (@t k) y
(583) ¢| = ! Q(r)e it lmd) ll\z (C5a)
(7\/2 Vorw
1 (Q ‘N mw’
(5.86) ¢, =
TN Varten s )
XQ(r)e — fwt Hn¢ l’\Z (C5b)

Surfaces of constant phase of the spinor field move
along trajectories determined from
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fargQ (r) —
where S is a constant.

From the approximate solution to (7.1) (C2), we obtain,
using (C4),

iot + imd + ikz =S, (Ce6)

argQ () = - 'iwzx—(wxnz

— (3x — (1 + x)AL 1"%dx, (C7)

where 7, is a suitable point in the r plane.

The time integral can be obtained from (C6) by consid-
ering the “constructive interference of ideal wave trains”
and setting S /9E = 0:”

98 _og- _ L
JE #
1

f’ Edx
26 Jr [U%x — (1 4+ x)*L?

—GBx—=D(x+ DAL
(C8)

or
(7.11a)

[ EJ dx
200 (U —(14+x)°L>—Gx— D(x+ DALV
(C9)

Similarly, the z and ¢ integrals are obtained by differen-
tiating (C6) with respect to P and L, respectively:

« f’ Pdx
r [Ux — (1 +x)*L?2 — (3x — D(x + DAL ]'?

(C10)
or
(7.11b)
. PJ‘r dx
= L
2J8 UM -1+ 22 —0Cx— Dx+ DAL '
(C11)
as 1

)
% Jri [(1 +x)*L + 4(3x — D(x + Dfildx
i X [Ux—(1+x)°*L?—0CBx=Dx+ DAL ]

(C12
or
(T.11) ¢ = -
2
y f 1 [0 +X +3Gx ~ D(x + Dfildx
i X (U — (14 x)*L? —GBx — D)(x + DAL |2

(L#£0). (C13)

Equations (C9), (C11), and (C13) are the equations de-
termining the neutrino motion in the short wavelength limit.
If in (C9), (C11), and (C13) we have, between the limits of
integration,

Ux>(14x)°*L2(x — D(x + )AL, (C14)
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then we can write

(1122) 1= L dx , (C15a)
2 ) (U —(1+ %)L

1.120) z= L dx , (C15b)
2 ) U — (1 +2°L2)""

and

r 4

(7.12¢) ¢:£f (4 x)dx . (Cl50)

200 x[UX — (1 +x)*L1"?

Equations (C15) correspond to the motion of a classical
point particle in the magnetic universe.

The major difference between Egs. (C9), (C11), and
(C13) and (C15) is the presence of a precession not present
classically. To demonstrate this, we calculate the coordi-
nate-time rate of change of the angle ¢ given by (C13).

From (C13) we get

dé _d(?) d_ 1

dt di d(?) 2

f’l [0+ x)*L + 33x — 1)(x + Dfildx
X [Ux—(1+x)*L2—0Cx— D(x+ DAL 1'?
Cl6

or
g _ 1dr) 1

dt 2 dr #

[(1 +A)'L? + 337 — 1) + D#A] _
(U2 —(1+ AL — 3 — 1) + DAL 172

(C17)
From (C9) we obtain
dt
d(r)
= _f_[U2,.2_(1 + LGP =D+ DAL] A
(C13)
Using the reciprocal of (C18) in (C17) we get
do _LU+R A GP-DE+D
o E »~ I » (=0
(C19)

The first term of (C19) is the result one obtains classi-
cally; the additional term is a precessional correction to the
classical orbit. To first order in #, the neutrino orbits precess
(as compared with the classical orbits) with frequency

(7.13) .= iarz D+ 1) (C20)
2EF
provided L-£0.

The precession is due to the helicity of the neutrino,
since a zero rest mass, zero helicity particle has no such cor-
rections to the orbit in the classical limit as explained in Sec.
VIII above.

APPENDIX D

In this appendix we solve the Weyl equation in flat
space with Cartesian coordinates using the Cohen—Kegeles
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procedure. The purpose for doing this, besides for purely
pedagogical reasons is twofold: first, it demonstrates the
straightforward simplicity and inherent versatility of the Co-
hen-Kegeles procedure, and second, it demonstrates a fur-
ther difference between this procedure and Teukolsky’s pro-
cedure. This was mentioned in Sec. II above. These
differences will be summarized below.

Here we simply have the line element

ds* =dt? — dx* — dy* — dz%. (D)
We wish to solve the Weyl equation
oV, P4 =0. (D2)

Here, as throughout this paper, Greek indices (referring to
coordinate space) run from 0 to 3 and capital Latin indices
(referring to spin space) take on the values 1 and 2 (or 1’ and
2'.) Summation is understood for all repeated indices.

In order to solve (D2) we must first choose a representa-
tion for the matrices 045 . In the Cohen-Kegeles procedure
this is achieved through the choice of the “spin dyad frame”
(), () along with an NP null tetrad /,, n,,, m,, m,. For
curved space, which is restricted to be algebraically special,
/, must be a repeated principal null vector of a Weyl tensor.
For the case under consideration here this condition is triv-
ially satisfied for any reasonable /.

The standard representation for the 0/i®  are the Pauli
matrices (u = 1, 2, 3) and the identity matrix (z = 0.) To
achieve this representation we take the tetrad to be

1= 1001}, n,= {1001},
V2 V2
(D3)
m/t: 1—{0’11"—1.30¥’ V;’Z.“: 1—{0’1’1.’03'
V2 V2
Then, since we have in the spin dyad frame, °
L,=0), n,=07 m,=07 m,=0., (D4)
. 1 0 . 0 1
po ) )
V2O Va0
(D5)

o O ) e L 0)
7 \/;(f 0 og_\/go -1/
which are essentially the unit matrix and the three standard
Pauli matrices. (Lower case latin indices refer to the spin
dyad frame).
All the NP spin coefficients vanish. The Cohen-Ke-
geles equation (5.1) becomes

(D'D — 88YW(tx,y,.z) =0, (D6)
where
pran? ol s 5ol
Ixt axH Ixt oxt
(D7)
so that (D6) becomes, using (D3),
Iy
Vi = —. (D8)
v ot?

According to (2.5), (2.6), and (4.6b) the spin dyad com-
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ponents of the neutrino spinor field are

¢ =—D¢ ¢,=—-56%, (D9)
or, using (D3) and (D7)
1 d d 1 a d
¢1:W(—E+ 5)’% ¢z=</‘—2‘(g+ 5)1/’
(D10)
We seek plane wave solutions of (D8):
Wt x,p,z) = Aef P~ @1, (D11)

where A is a constant.

Substitution of (D11) into (D8) gives the relativistic dis-
persion relation

w?=p? (D12)

for zero rest mass particles.
Writing p = {p,.,p,,p. }, (D10) becomes

¢ = —((1) +Pz)'//(t x’y’z)
RV

(D13)
¢ =

=(ip. — pY(1,x.,2).
\/ 2 ’
If we have neutrino motion in the + z direction,
p.=p,=0andp, = o from (D12). Thus in this case (D13)
becomes

D, = 1\/5(01&((1),

which is seen to be an eigenstate of o5 2 of (D5) with eigenva-
lue + 1/(2) V2

For neutrino motion in the — z direction, p, =p, =0
and p, = — w (@ > 0) so that (D13) reduces to the null
spinor field. Although this is a legitimate solution of the
Weyl equation (D2) it is physically uninteresting.

A null result of this sort is encountered in the analysis of
the meridian plane orbits of the neutrino in the cylindrical
magnetic universe as discussed in Sec. V. As explained there,
the nontrivial solution can be found by making the inter-
changes /#<«<>n*, m*<>m* in the NP null tetrad and rework-
ing the probelm.

For the cases of neutrino motion parallel to and in the
direction of the x axis (p, = p, = 0, p, = w) and parallel to
and in the direction of the y axis (p, = p, =0, p, = w) the
neutrino spinor fields from (D13) are, respectively,

= \/21!/()

(D14)

(D15)

and

(D16)

o= \/2¢(— )

which are, respectively, eigenstates of o? " and 042 of (D5)
each with eigenvalue + 1/(2) /2.

For this simple example Teukolsky’s two equations '!
become for the same choice of tetrad,

F¢,
dt?

Vi, = (@a=102), (D17)
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which are equations directly involving the spinor field with-
out the use of the “potential” ¢.

(D17) has the plane wave solution

D, = (gl)e‘(“"‘ < (C,,C, constants), (D18)
2
which is essentially the Cohen-Kegeles result (D13). The
Cohen—Kegeles result, however, automatically gives the so-
lution in spin space in terms of the particle momentum p.
Teukolsky’s procedure gives (D18), which gives only the
spacetime dependence of the spinor field. The constants C,
and C, remain to be determined under the restriction that
@, be an eigenstate of the helicity 0% p, where here
k=123

In conclusion we list the four major differences between
the Cohen-Kegeles and Teukolsky procedures.

First, the Cohen—Kegeles procedure is valid in all alge-
brically special spacetimes whereas the Teukolsky proce-
dure is valid only in type D spacetimes. '!

Second, the Cohen—Kegeles procedure solves the prob-
lem directly in spin space as well as in coordinate space
whereas the Teukolsky procedure does not.

Third, the Cohen-Kegeles procedure involves the solu-
tion of one differential equation whereas the Teukolsky pro-
cedure involves the solution of two. We note that the two
Teukolsky equations may be identical (as in the above exam-
ple) or the second may be obtainable from the first by simply
changing the sign of a parameter. In general, however, this
may not be the case.

Fourth, the Teukolsky equations are derived by apply-
ing specified NP operators to (2.2a) and (2.2b) and then add-
ing these equations. '' For this reason the solution space of
the Teukolsky equations is generally larger than that of the
original Weyl equations [Egs. (2.2)]. It then becomes neces-
sary to substitute solutions of the Teukolsky equations back
into the Weyl equation to check on their validity. With the
Cohen—Kegeles procedure this is not necessary.

Note added in proof: The completeness of the set of radi-
al eignfunctions R, ,,(r) for a given value of m may be demon-
strated by substituting R, ,(r)=WS (r) in Eq. (5.4). The re-
sult is

ds 2 _
o ( Wd—) —v(NSE) +AYWS(#F) =0 (m5£0)
where

2
(=2 Wom 4 32 — 1y
I4

1
- ——@r+6r—1).
4w ( )

This differential equation, together with the B.C.
§(0) =0, lim,_,_ S(r) =0, constitutes a Sturm—Liouville
problem on the interval [0, o ). The weight function is rW.
Denoting the normalized eigenfunctions by S*(r) we have
that

r rWS* (NS (r)dr = 8.
0

David F. Cattell and M.A. Melvin 1923



ACKNOWLEDGEMENT

We wish to thank Professor Jiirgen Ehlers for reading
and commenting on the manuscript of this paper.

'J.M. Cohen and L.S. Kegeles, “Space-Time Perturbations,” Phys. Lett. A
54, 5 (1975).

‘ALl Janis and E.T. Newman, “Structure of Gravitational Sources,”” J.
Math. Phys. 6, 902 (1965).

‘J. Wainright, “A class of Algebraically Special Perfect Fluid Space-
Times,” Commun. Math. Phys. 17, 42 (1970).

*J. Plebanski, Spinors, Tetrads, and Forms (Centro de Investigacion y Estu-
dios Avanzados del I.P.N., Mexico City, 1975). A detailed treatment of
the optics of congruences of null géodesics is given in Sec. VI. 4 of this
book.

‘M.A. Melvin, “Pure Magnetic and Electric Geons,” Phys. Lett. 8, 65
(1964).

*M.A. Melvin, “Dynamics of Cylindrical Electromagnetic Universes,”
Phys. Rev. 139, B225 (1965).

'M.A. Melvin and J.S. Wallingford, “Orbits in a Magnetic Universe,” J.
Math. Phys. 7, 333 (1956).

*The simple perturbative theory may not be applied to photon fields (heli-
city 1) in a literal magnetic universe. In this case the background metric of
the same form is ascribed instead to a nonelectromagnetic plasm of index
2 *so that the simple perturbative procedure applied for helicites # = Oand
h = 4 also applies to 4 = 1. Whereas the CK method applies also when a
test field is of the same nature as the background field, provided the latter
is corrected for the perturbation cross term, the equations in this case are
considerably more complicated. The case of radial electromagnetic pertur-
bations in the literal magnetic universe was worked out in detaii by one of
the authors in an early paper in connection with a stability analysis of the
magnetic universe. * This was done directly using the vector potential,
which had only one component in that case, rather than by the use of the
Debye potential as in the CK procedure.

1924 J. Math. Phys., Vol. 20, No. 9, September 1979

°E. Newman and R. Penrose, “An Approach to Gravitational Radiation by
a Method of Spin Coefficients,” J. Math. Phys. 3, 566 (1962).

“R. Geroch, A. Held, and R. Penrose, “A Spacetime Calculus Based on
Pairs of Null Directions,” J. Math. Phys. 14, 874 (1973).

"'S.A. Teukolsky, “Perturbations on a Rotating Black Hole. I. Fundamen-
tal Equations for Gravitational, Electromagnetic, and Neutrino Perturba-
tions,”” Astrophys. J. 185, 635 (1973).

"F.A.E. Pirani, Brandeis Summer Institute, 1964 (Prentice-Hall, Engle-
wood Cliffs, N.J., 1965), p. 305.

"J.M. Cohen and L.S. Kegeles, “Electromagnetic Fields in Curved Spaces:
A Constructive Procedure,” Phys. Rev. 10, 1070 (1974).

"“Alternatively one may define the ¢ ’s directly in terms of the Maxwell field
tensor projected onto the null tetrad as follows: *

S =F, 1",
@ =L4F, (I"'n” + ma"),
b, =F, mtn".

I

"*J. Stewart and M. Walker, Springer Tracts (astrophysics) 69, 69 (1973).
"*We note that (3.9) may be written using the following generalizations of
the operators 4, and 4, defined in Ref. 15:

A=PP—p'P— (s + DpP’ —s(s + ¢, + L + )R,
A= 334+ 134+ 25+ D8 —s(s + DY, + L6+ LR
Using these definitions the complex conjugate of (3.9) becomes

(A, + AP =0

"R. Graham, "'Lagrangian for Diffusion in Curved Phase Space, ' Phys.
Rev. Lett. 38, 51 (1977).

*In Ref. 5, 7, p, and { are used in place of ¢, r, and z. We use the latter here to
avoid confusion with the spin coefficients 7 and p.

"“W. Pauli, Die Aligemeinen Prinzipien der Wellenmechanik Handbuch d.
Physik, Springer, 1933), 2nd ed., p. 120.

“Albert Einstein, The Meaning of Relativity (Princeton U.P., Princeton,
N.J., 1956), Sth ed., p. 68.

*'B. Podolsky, “Quantum-Mechanically Correct Form of Hamiltonian
Function for Conservative Systems,” Phys. Rev. 32, 812 (1928).

#“D.R. Brill and J.A. Wheeler, “Interaction of Neutrinos and Gravitational
Fields,” Rev. Mod. Phys. 29, 465 (1957).

David F. Cattell and M.A. Melvin 1924



Expansions of the affinity, metric and geodesic equations in Fermi normal

coordinates about a geodesic?
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Fermi normal coordinates about a geodesic form a natural coordinate system for the nonrotating
geodesic (freely falling) observer. Expansions of the affinity, metric, and geodesic equations in
these coordinates in powers of proper distance normal to the geodesic are calculated here to third
order, fourth order, and third order, respectively. An iteration scheme for calculation to higher
orders is also given. For generality, we compute the affinity and the geodesic equations in an
arbitrary affine manifold, and compute the metric in a Riemannian manifold with arbitrary

signature.

I. INTRODUCTION

Fermi' showed that, given any curve in a Riemannian
manifold, it is possible to introduce coordinates near this
curve in such a way that the Christoffel symbols vanish
along the curve (Fermi condition), leaving the metric there
rectangular. If the curve is a geodesic, one way to construct
such a coordinate system is to set the acceleration to zero in
Synge’s? construction of a natural nonrotating coordinate
system for an accelerated observer. Manasse and Misner’
called these coordinates Fermi normal coordinates. They
form a natural coordinate system for a freely falling observ-
er; we use them throughout this paper. Fermi normal coordi-
nates satisfy the Fermi condition along the geodesic. The
constant “time”” hypersurfaces are normal to the geodesic.
The “space” coordinates on these hypersurfaces form nor-
mal coordinate systems.

Fermi normal coordinates determine expansions of the
affinity, metric and geodesic equations in powers of proper
distance normal to the geodesic. Manasse and Misner® de-
rived the first-order expansion of the affinity and the second-
order expansion of the metric. Using a result of Hodgkin-
son,* Mashhoon® obtained the first-order expansion of the
geodesic equations. In a more recent paper, Mashhoon® also
obtained the second-order expansion of the geodesic equa-
tions. By setting acceleration and rotation to zero in Ref. 7,
we derived the second-order expansion of the affinity and the
third-order expansion of the metric.

In this paper, we calculate the third-order expansion of
the affinity, the fourth-order expansion of the metric and the
third-order expansion of the geodesic equations. For the
sake of generality and in view of the recent interests in higher
dimensional superspace, we calculate these formulas in an
arbitrary dimensional manifold with arbitrary signature. In
fact, all formulas in Sec. II are derived for affine manifolds
(without torsion). We also indicate an iteration scheme for
higher-order calculations.

The present results would be useful in the path-integral
formulation and in the calculation of effective action and

“Supported in part by the National Science Council of the Republic of
China.
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energy-momentum tensor in quantum gravity. They would
also be useful in obtaining physical effects in binary pulsars.

Il. EXPANSIONS OF THE AFFINITY AND GEODESIC
EQUATIONS

Let V', be an N-dimensional affine manifold. Consider
a geodesic P,(7) in V. 7 is an affine parameter for P, (7). At
a fixed point 7, on the geodesic P, (7), pick a basis N-ad
{e.(10):a=0,1,2,...,N — 1] with ey(r,) = (3/7), _ ..
Parallel transport e, (7,) along P,(7) to obtain a basis N-ad
fe, ()} all along P, (7). Since P,(7) is a geodesic and 7 an
affine parameter, e, (7) = d/dr.

Throughout this paper we shall use Greek indices to
vary from 0 to N — 1 and Latin indices to vary from 1 to
N-—-1.

At any point P,(7) we send out geodesic P (7;n;s) with
n=n'e(r),i.e, n’ =0, where n = (3/ds)p,,, and s is an af-
fine parameter for P (7;n;s). At the point P (7;n;s), assign the
coordinates x"=r, x’=sn'. It is easy to show that these co-
ordinates are well-defined in the neighborhood of P,(7). We
shall call them Fermi normal coordinates in an affine mani-
fold. This coordinate system is good for

1 | R '“\'a/J' '
172 ’

| R “\'(1/3 | ’R ‘u"a/f.}‘|
since within this distance curvature has not yet caused geo-
desics to cross (s<1/[R*, 5| '"?), and the Riemann tensor
has not yet changed much from its value on Py(7)
(s< 'R “wzﬁ I / l R “\'a/i}/| ) ) )

Since the curve x° = 7 = const, x' = a's, satisfies the
geodesic equation

s<€min

dx* dx® dx”
+ I, =0, 1
ds’ Pds ds M
we have
Iyl maa’ =0. 2

Because a' can be arbitrary
I ylen =0. )

From the fact that each of the vectors e, () satisfies the equa-
tion of parallel displacement along the geodesic x° = 7,
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x' = 0, we obtain

r “U()|P',(r) =0. (4)
(3) and (4) show that the Fermi condition
r “41/)’ ll’“(r) = 0’ (5)

is satisfied.
Differentiating (5) along Py(7) with respect to 7, we get

r”;l\f,()lP‘,(‘r) =0. (6)
From the definition of the Riemann tensor,

r”;z() v =R (1/1\'() + re Hv,0 + (F(‘u\r au() re Ora(n)
H Q)
€nce
r “,u().\' = R ";1\() along P()(T)‘ (8)

To calculate the Latin-indexed derivatives of the I"’s,
we use the geodesic deviation equation

dZK/l d o

¢ a agyya B ¢
o F2 T U KUY R

+ KU U g+ T gl g =T, T'705) =0, (9)

whereK = d /dK and U = d /s of a one-parameter family of
geodesics R (K,s), and where s is an affine parameter along
the geodesic R (K,s) for K fixed. The family of geodesics we
want to consider is P (7;a’,s)=P (7;n;s) where n = a’e,. The
case K = d/da’ leads to the desired results. In this case

K = 8/da’ = s(3/9x"), hence K " = s6/. Expanding terms
in the geodesic deviation equation in powers of s, we have

arop j_ I Jyk 2 ou Fyky !
28T " 0! =25 " | p p@la” + 5T Fy | pyala’a

3
+ %r“ |pm@’aa’a™ +0(sh, (10)

ij.kim

il
KU (zU R ‘uuu/i

— Ik R 1 PN SN SN I
=sa’a’R ", |P‘,(r) +sa’a"a’R jl'k;l|P0(r)

+ % s'a’ara Iam(R “jik,l).m |P.,(r) + 0(54)’ (11
K (IU(IU /jr ”ua,/j
= 5T "y pyn@’@® + 8Ty |y 'ate
5’ k1 m
+ ST jaamlno@atala” + 0, (12)
KUy /1’([" T””I",Hr/; S o ,UUTI—‘ Tﬂ/})
= sj(r Tij,I[‘ ‘“rk m r l/rl jk,l71)lP|r(T)
Xaja/\'a/ 171+0(S4) (13)

Substituting all these equations into Eq. (9), every order in s
must vanish separately. Therefore,

@ar “,‘,‘.A +R “jiA)|n.(r)ajak =0, (14)

Q'+ R %) I’,,(r)ajaka =0, (15)
7 i + SR o+ Tyl i

o DT AT . 20 fala™ = 0. (16)
(14) leads to the results of Manasse and Misner*:

Ity= —=(R ", +R*",) along Pyr). a7

(15) leads to the results of Ref. 7 with a = @ = 0 there, i.e,,
= — %(R Hiw 1+ R 50) — %ﬁlR P (18)
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where the symbol P indicates that the expression following
it is to be summed over all A permutations of {, ,...,i,

Differentiating (6), (8), and (17) along Py(7) with re-
spect to 7, we get

(24
r 1,00 = O'
a a
r 100 T R 10,00
1% I
r kO = —'—(R UI\O+R 1k0)

Differentiating (7) with respect to x* and choosing ap-
propriate indices, we have

=T "00+ R o
= “—(R Mo T R o) + R o

19)
all along Py(7).

along P,(7). (20)

Summarizing the first-order and second-order results,
we obtain

F”‘uv,() =0,
0. =R 0 @21
o= — —(R “a+ R P, all along Po(7),
and
I’ 0=0
r a,u(),\() =R a;uo;o’
o= — %(R ko + R o)
r H()(),jk =R "Q/U;l\‘ +R “jk 0,00 (22)
T fop == 3R 0+ R o) + R * o
= — {‘(R B+ R 50) — HI;R Jiki b

all along Py(7).

To derive an expression for the third-order derivatives

r we use Eq. (16). Since @' can be arbitrary, (16) is

Gk
equivalent to
ST ki + ST igim + 5T ¥ + ST H i i
+ P R ,l/'l\ Im + P rTij,Ir #rk.m P+ ir, IF Jk.m
_}/\IH'I Jkim Jkim
=0 along Py(7). (23)

From the definition of Riemannian tensor,

1" ll(”/‘ P =R Ha/i)' + 1“ “11/3,7/ + (r (’a/}r Hur _ Faa}r “o/j)'

(24)
Differentiating (24) twice and using (5), we get
F /‘ay. Pbe
= R ‘“aﬁ;’.b‘é + F “(1/37/3{ + raaﬁ,r‘ir “rr‘y.e + r”(r/i(
Xr “(77/,[5 - r ay., Sr ‘(7/36 F(ray.fr “0/3,5
along P,(7). (25)

Choosing appropriate indices and using (21), we derive

r a = r ijkim + R lul\ Im %(R Oij/ + R Ojil)R “km()
- i(R 0l'jm + R ()jl"l )R “kl() + %(R 0il(l + R Okil)

XR “jm() + T(R Oikm + R Okim )R ’lj/() + %(R p,ﬂ

ik jlm
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+ R Z)DR Yy + R ¥yp0)
+ —(R gm T R PR
+R ¥ ) — SR Py +R P
XR i+ R ) = SR Pt + R Pii)
X(R #,;+ R *,) along Py(r), (26)
—(R R OGIR
o— R jIOR
pkm + R )R o — R ijoR Hxio
+ —(R ot RYLIR P, along Py(7), (27)
T Fookim =T orom + R ¥orom + R “ioR ¥omo
+ R %n0R #0104 R P010R ¥ pim + R i)
+ 3R Po,oR “pg+ R ¥yy)  along Py().(28)
From the definition of covariant derivatives and Eq. (5),

R “Byo‘; Ae = R aBy&,/{e +R #ﬁyérayi e R a,msr ”BA.e
—R "Byiir a —R aﬂyyr #8/1,6
along P,(7). 29)
Using (26), (21), and (29) to solve Eq. (23) for I" #;; ;;,,,, we
obtain, after some straightforward computations,

I oigim =T i imo + R Pjoim —
—(R (jkm + R Ukjm)R
_.( R~

YA€

I H ey im = —““P P QR *ym + R ¥ i)

ij kim
-—;0—1; 1\1;71 (23R R,
—9R R ¥ oy — ISR 7y, R "jok)

1 ]
~ PP ROUR i, (30)
Differentiating (22) with respect to 7 and using (5), we
derive

|
"y o= — ;(R Hikoo + R #iioo) + R ¥ o k00

1
# — u #
't o= — ;(R jkio + R ko)

__PR Jikib

12

all along Py(7).

Using (29), (31), and (21) to compute I" #o; 4 I ¥ 00 xim 1D
(27) and (28), we have

r #Oj,klm = —‘]l; lfm (R ”kjlmO +2R ¥ JOK; 1) + Pm
(R #aOkR aljm —R ”jakR alm() —R _/Ok'R Iam)
—_— P ROIO,\R “om along Py(7), (32)
I\Im
r #OO,klm = % k}IJ (R 'uOkO;lm +R luk[();mO)

- % 5 (R #Oko R UIOm + 3R OIOmR #akO)

+1 kll)m Ry oR ¥,  along Py(7). (33)

(30), (31), (32), and (33) include all third order derivatives of
I’s.

Substituting (5), (21), (22), (30), (31), (32), and (33),
into the Taylor expansions of I" # 5(x%x") with x° = 7

; i 1
I ap(Ox) =T H g (Po(1)) + T ¥ g (PP + e

iy f 1 L
X “aﬁ.ij(Po(T))x x/ + E'— rt aBijk (PO(T))

Xx'xxk + 0 ((x)?), (34)
we obtain the third-order expansion of the affine
connections.

To derive expansions of the geodesic equations
2.1 I

d-*x Iy dx" dx” —o, (35)
ds’ ds ds

in Fermi normal coordinates, we first put (35) into the fol-

I, o0=0, lowing form:
2.0 ) i I v
F"/t(ln(X) =R (I#‘O:OO’ d E 2 + (F l/tv - rouv di) dxo ax =0. (36)
T 00 = — 3R * 00+ R Fiuco0), (‘?x o , .dx, .
' 3 ' ' Denoting dx ‘/dx° by v', and substituting the expansion of
I Foojk0 =R *gok0 + R %000 3n the affinities into (36), we obtain the third-order expansion
| of the geodesic equations:
d 2x' j i i J ! Jank
dx®y? = —X R0,01+ZXR0 L' +2xR,jD,v + = xROJ,\,uvv + = xR,-jk,vu

I.m 1 {.m, j !
- ;(Riow;m + Ryp000x X7 + ;Riljm;ox X007 — Rile;mx x"v!

+ —]J;(SRikjl;m + Riljm;k )xl

m,, .k t Iom i i /
xMvly +—RO,0m0xx V' + Roprmt 'v/x 'x

m 1 I my i
+—R01jm0x v

l m,.i a I71
+ —(5R0kjl»m + Rogjmx )X X"k + —(R ‘okoR “1om + 3R %10, R 'si0 — R PoroR lpm)xl ,

— IR xRy, — R
+ _(23R jAIR lm/in

180

I.m_n

! k 4]
—R jOkR lam)x "x UUJ _R jOkR 1on® x
A 0
—9R mjnR Akl T
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mxkyipd —

Iym ok
JaAR mo — R o R e X XX U1+2R ka omX x"xkv’
A 1
9R 4 iR Caxg — 15R A, R Ox X x"v v
k 0
_R kiR " ox XX 00K +‘R % 1omR Cooix X% U'+—(R a0k

— R %R %o
m(37R jI\IR Om/{n

A 0 k 2
I5R limR " kan)X xmxmv i —;R jktR omOnx mxmvio vt
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1 i i [.m_k 1 i i Iom k. j
— ;(R okam T R pomo)X XX + g(R kitmo T 2R g )X XX 0

1 i i I om_n. j.k 1po
+—2(—)(6R jkt:mn +R nj[;mk)xx XUV +ER klO;mOx

1 0 0 Iom ki j ! 0
— R im0 + 2R T sm)x X7 X007 — SA(6R

Ill. THE METRIC TENSORS

In this section, we suppose ¥ to be a (pseudo) Rieman-
nian manifold of signature » — s with » + s = N. In addition
to I"“;,, there is a metric g ;. In the construction of the
Fermi normal coordinates in Sec. I, we now require the
basis N-ad{e_(7,)} we pick at P,(r ) to be orthonormal,
i.e.,

e (7 0)'e[)’(T D=7 ap (38)
where 7 ;= diagonal{ + 1, + 1,...,, + 1} with r plus signs
and s minus signs. Parallel transport along a geodesic per-
serves the relations, i.e.,

e (1)eg(r) =7 4

Substituting (5), (21), (22), (30), (31), (32) into the
relation

(39)

. g [ed
g/n', a g no F vz =+ 4 oy F pHo (40)
and its successive differentiations, we obtain successively

g afd, y = 0 along P()(T)’ (41)
8 0=0, oo = — 2R0j0k!
2
oijk= — 3 (R()_/ik + Rokij)!
g Im.ij = - % (Ri[jm + Rimﬂ)’
all along P, (1), (42)
& up, 00 = 0, 80, ko= — ZRO;‘OR:O’
2
8oijko= — 3 (Roxijo + ROjik;O)v
1
& im. o= - 3 (Riljm;() + Rimj[;())y
— 1 —
oo jxi = — 3 P Ro,{)k;/: 8oikim = — 1+ P ROkiI;m!
JKl kim
g:/. Imn — é [P Ri/jrn:n’ all along P() (T)7 (43)
mn
8 ap. 1000 = 0, 8oojko0= — 2R0ﬂ)k;()()’
2
8oipo0= T 3 (ROAij;UO + Roj‘;‘;\-m),
1
& im. oo T T 3 (Ri[_jm;()() + lejl;()())’
1
800 im0 = T 3 PR ommor
= Imn
!
g()j, im0 — Z 15” R()Ijm;n()’
=—L1PR
g ijodma — 6 il jmn0s
Imn
1 1 o
80, jkim = T T2 P R()j()k;/m + 3 P ROkamR Jjob
X Jkim < jkim
1 2 o
g()j. ktmn — — s “1’)”” R()kj/:mn + Ts kﬁmR ]\’anRO[()' n
1 2
—_ L i Mo X
gij, kimn — 20 kﬁm R:kjl;mn + 45 klIr)nn R ijR;lmm’
all along Py(7). 44)
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Jklumn

lxmxkvi

+R Onjl:mk )x lxmxnuiujvk_ (37)

[ From Egs. (41)—(44), the line element at a point
P (x° x') near the geodesic P, (r) with x° = 7, is
ds’ = (dx")*(17 oo — Roonx'*"

I n

1
-3 Ro1om X x"x

1 o 1
+3 Ropo il “jom X X

n_k

lmxx‘

1
- —1—2— ROnOk; Irnx X

71

x"x¥)

I.m_n

0 7 2 I.m !
+dx dx(_;ROlmfrx _ZRO/im: XXX
1 k,m Il _n 2 o km_I_n
_I_SRO/\'im; X X XX +GR kimR()[Un'x X XX )
i j 1 i.m
+dx dxj(?']ijng”ijx
1

I..m_n 1
—"(:Ri/jm;nxx X “%Rikjl;mrrx

2 a ko dlom_n
+75-R /\'j/Raminx XX x)

kxlxmxn

+ O [dx® dx” x*x'x™x"x *]. (45)
Using (41)-(44), the formula
g 0= —8"8p..8" (46)

and its successive differentiations, we calculate the deriva-
tives of the contravariant fundamental tensor to be

g =0, all along Pyr), 47
gaf)" 0= 0, g()()‘jk — 2R ojok,
gOi./'k = % (R Okij + R Oj“k ) 8 '.j. m= % (R iljm + R imj/)a
all along P,(7), (48)

87 00=0, 8% o=2R""p
g” kO™ % R ij:() + R O,’ik;o),
g 1o = % (R iljm;() +R imj/;o),
g by =1 P R\,
8% =% P R\ 8% =4 P Ry

all along P,(7), (49)

af? — 00 — 00
2000 = 0, g koo = 2R F k00

g

0; _ 2 0 i 0
8 koo = f{(R k o0 T R J 300)s

. 1 . - 00 1 00
L _ i L —
g j,[m()() - T(R ljm;()() + R m I;OO)’ g Jmn — + 3 P R ! nimQ?

- imn

1 ij
+ - P R I mn0?

0 — 1 0 ij —
g “dmn0 — + 1 P R 1 mn0r g Amn0 T 6,
mn

Imn

_+__l_ PRO]\./I[.R()

Am
9 jkim /

goo :LP RO

Jkim 12 him § kim

S o 0po
+ - PR k J’R Jome

O jkim

gor _ P RO

jkl j kilm
yrm 15 Jkim J

+ E P R Ok ()[‘R Oj‘.m’

9 jkim

+% P R()VU\_R/{’

i m
- jkim /
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i 1 i g 1 A J
& kimn =35 P Rkl;mn+ﬁP R%/ Ry
kimn kimn

+1 P R Ry, all alongPy(r). (50)

kimn

Using Egs. (41)—(44), (5), (21), (22), (30)~(33), we can
calculate I',,; and their derivatives through the formula

ryuﬁ = g,uvr V(IB (51)
and its differentiations as follows:
I ap= 0, along Py(7), (52)
r;mB. 0=0 1 rtmO,v = Rayv()’
L= — 5 R+ R i) all along Py(7), (53)

r;utb’.()() = 0’ ra,uOAO = Ra;u().O’

1
r,uj,k() = - 3 (R,uijk;O + R/x j[k;O)v
1
F/L()O. Im = P IP (R,uOIO;m + Rp[mO:O)’
m
r =1p (R — IR, .0
1O jdm T . 1 jl0:m 3 Tl jr0
m

r =LPP (SR;ukj:l - R#k'-lij)’

it j kI 23
w i ki

all along P,(7), (54)

F;mtB,OOO = 0’ r(zuO‘\()O = Ra,u\O:OO’

Lijkoo= — é (R jk00 + R, jik:00)s

L 0. imo = % f; (R,.010.m0 + Ryiimo.00)s
F,u()j,lmO = % 5: (R/lj/():m() - % Ruljm;OO)’
F/Aij-.klo = % },7] 1:1 (SR;likj;IO - R;tkil;jo)’
—= P ROk 0f: m»

6 kim

r,m, kim = % 5 (RjOk(); im + RjkIO;m())
"

F()OO' kim =

- % 5," (Rj()kuR “rom + 3R O/Om RjokO
+ R ”0/(0 Rj/(nn )’

1 1
rooj, kim = T T3 5 (RijI;mO + 2R0j0k;[m) + s ’5
X (R() aOk R ”[jm - ROjak
X R rllm() + 3R aj()kROIam)’
1 1
F’OJ- Kim — 7 E /\'1[)m (Rikj[;mO + 2Rij0k;lm) + o kf;"
(Ri aOk R uljm - Ri_/'ak R aImO + R ajOkR(lmi/)!
1
r()nj.l\lm = - 20 ],z I\f (3R()njk:[m
1
+ ROnmA;/j) + 360 rP P (57R AnjA‘ROMm

nj kim

+ 9R Alnm 'R(Mjk + 15R /llnm ROj/lk )’
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rinj,klm = —ﬁ P P (3Rinjk;lm +Rimnk;lj)

nj kim

+35P P(L7R /{nijiMm +9R %, R,

ni kim

+ 15R %, R )
all along P, (7). (55)

IV. ITERATION SCHEME AND DISCUSSIONS

(i) Suppose we know the derivatives of I"’s along P, (7)
up to nth order. Differentiation with respect to r gives ex-
pressions for I"°,,, . .. . o. Using nth order differentiation
of (24), I'° ;5 4.4, ..a,» €an be expressed in terms of
I'?,, aa.ap and lower derivatives of I"’s. To solve for
I'? ..., . ,» weuse the geodesic deviation equation as in
Sec. II. From the vanishing of (# + 1)th order in the expan-
sion of the geodesic deviation equation in s, and from nth
order differentiation of (24), we can obtain an expression for
I'?, ... _,- Thus, we obtain all (n 4 1)th derivatives of
I'’s. Substituting these into (36), we obtain (7 + 1)th order
expansion of the geodesic equations. Following the method
used in Sec. 111, we can derive expressions for the (n + 2)th
derivatives of the metric tensors. This forms an iteration
scheme for computing higher-order expansions.

(i) The above iteration scheme applies equally well to
Riemann normal coordinates just by dropping the 0 index
and going to (V — 1)-dimensional manifolds. If we do these,
we obtain the results in Ref. 8. Note that the differences in
the expressions for the Latin-indexed quantities such as
T#,; jims €tC., in this paper and those in Ref. 8 come from the
difference in the definitions of Riemannian tensors, etc., in
different dimensional manifolds.

(iil) Specializing the results in this paper to N = 4 with
signature 2 and letting P(7) be a timelike geodesic, we obtain
the third-order expansion of the coordinate acceleration and
the fourth-order expansion of the metric in the proper frame
of an observer moving along P,(7). For an accelerated rotat-
ing observer, the third-order effects in coordinate accelera-
tion and the fourth-order effects in the metric can be classi-
fied into purely gravitational and coupled inertial—
gravitational terms. The present paper gives purely gravita-
tional terms to this order.
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Euclidean and Minkowski space formulations of linearized
gravitational potential in various gauges

S. C. Lim®

International Centre for Theoretical Physics, Trieste, Italy
(Received 18 July 1978)

We show that there exists a unitary map connecting linearized theories of gravitational potential in
vacuum, formulated in various covariant gauges and noncovariant radiation gauge. The free Euclidean
gravitational potentials in covariant gauges satisfy the Markov property of Nelson, but are nonreflexive.
For the noncovariant radiation gauge, the corresponding Euclidean field is reflexive but it only satisfies
the Markov property with respect to special half spaces. The Feynman-Kac-Nelson formula is
established for the Euclidean gravitational potential in radiation gauge.

I.INTRODUCTION

The analysis carried out by Bracci and Strocchi,' ™ using
Wightman'’s axiomatic framework® on the quantized theory
of linearized gravitational field, showed that the gauge prob-
lems that exist in massless spin-2 particles also give rise to
difficulties similar to those in quantum electrodynamics
(QED). A local and covariant quantization of the linearized
Einstein equations is possible only in a Hilbert space with
indefinite metric, i.e., in the Gupta-Bleuler formalism.**
The basic mathematical framework in this formalism is a set
of three Hilbert spaces # " C #'C # and a nondegenerate,
Hermitian sesquilinear form {-,->on #, which is semidefin-
ite on # ' and induces a definite inner product on the phys-
ical space # '/ # ". Then linearized Einstein equations do
not satisfy as operator equations but only as mean values in
7 '. Any quantized theory of gravitational potential that
does not involve unphysical states requires a nonlocal and
noncovariant formalism analogous to the radiation (or Cou-
lomb) gauge formalism in QED. It is only in this noncovar-
iant theory that the linearized Einstein equations can be sat-
isfied as operator equations.

The main purpose of this paper is to study the relation-
ship between the linearized theories of free gravitational po-
tential in covariant and noncovariant gauges in both Min-
kowski and Euclidean space~time, in particular the
properties of the corresponding Euclidean fields. It is possi-
ble to show that there exists a unitary equivalence between
the covariant and noncovariant gauge formalisms of gravita-
tional potentials in vacuum just like the case in QED.”" In
the Euclidean region the gravitational potential is found to
satisfy Nelson's Markov property'!" for a wide class of co-
variant gauges, though it does not satisfy the reflection prop-
erty. For noncovariant gravitational radiation gauge, the
corresponding Euclidean field is reflexive, but it only satis-
fies the Markov property with respect to special half-spaces
(i.e., Hegerfeldt's Markov property of second kind'?). It is
possible to establish the Feynman-Kac—Nelson formula'
for the Euclidean gravitational potential in radiation gauge.

"On leave of absence from Department of Physics, National University of
Malaysia, P.O. Box 1124, Kuala Lumpur, Malaysia.
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Finally we note that a relationship similar to that in the rela-
tivistic case also holds for Euclidean gravitational potentials
in covariant and noncovariant gauges.

Il. LINEARIZED THEORY OF GRAVITATIONAL
POTENTIALS IN VARIOUS GAUGES

Throughout this paper we shall confine our discussion
only to the linearized theory of gravitational field in vacuum.
First we shall recall some basic facts about the nonquantized
theory of linearized gravitational field. In the weak field ap-
proximation, the Einstein equations in vacuum are"

R, ()= 0. R(x)=0, (1)
where
R‘u\' = g/i/‘R/'.‘ul‘,n' R= g’“‘R,u\" (2)

8" {5 the Minkowski metric tensor with gl =o", g

= — 5" and R, (x)is the Riemann tensor or gravitation-
alfield. In addition to the above equations R, , also satisfies
the following identities:

R/l/nyl = - R/l/'.\'/: - R/A/./?\ = R\y;/lu‘ (3)
R/l\'/»u + R/,(r\'/r + R/{/m\' =0, (4)
e"d R = (0 (Bianchi's identities). (®))

afdper

Equations (3), (4), and (5) imply that R ,, ,, (x) can be ex-
pressed in terms of a symmetric rank-two tensor, or the

gravitational potential G,,, (x)
R“"’”’(x) = %[aﬂ d,6! 6//); - a,“ a/;(s(‘l (54/);

oy

+ a\' a 61161/)7, - a\'aa 5;: 55]G11/}(x)

pYu

=4[, 9. G,,(x) - 3,9,G,,(x)

nYp

+ a\' a/) Gur(x) - a\' arr G/zp ('x)]

f
=D, Gop(x). (6)

This definition of R, ,,(x) in terms of G, (x) contains an
arbitrariness of freedom corresponding to gauge

transformation
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G, (x)>G,.(x) + 3, B(x) + 3, B,(x). ()

-
The four arbitrary vector gauge functions B, (x) can be fixed
by four gauge conditions, which can be given in many ways
just as in the case of electrodynamics. For example, the ana-
log of the Lorentz gauge conditions for electromagnetic po-
tential is

G, (x) — 39,G(x)=0. (8)

F2al
These four conditions are called gravitational “Lorentz”
gauge conditions or simply Gupta gauge conditions. Togeth-
er with Eq. (6) they give

R (0)= -G (x)=0, Q)

i Il
implying that linearized Einstein's equations in vacuum de-
scribe essentially a free field theory. Similarly, one can also
employ the four gravitational radiation gauge conditions

3,G(x) =0, G!(x)=0, (10)

which are analogous to the electrodynamic radiation (or
Coulomb) gauge condition.

In the quantized theory, even though not all the Wight-
man axioms are satisfied by G,,,, we can still follow a Wight-
man approach to the theory with some modifications.** We
shall follow the general scheme of Wightman and Strocchi®

in the following definition:
Definition 1 (see also Ref. 3):

A local and covariant gauge for G
(x), 7, (>, 7', where:

(a) G,,,(x) is an operator-valued tempered distribution

in a Hilbert space # :

(x) is specified by

v

|G

1y

(b) There exists a distinguished subspace # 'C # such
that

(1) a nondegenerate, Hermitian sesquilinear form {,->
exists in # , with respect to which the representation U of
the Poincaré group SL(2,C) is unitary;

(11) ¢-.->, when restricted to # ', is bounded and
nonnegative;

(iii) the Riemann tensor R,,,,,, =D :j{fw G, ;(x) leaves
# "invariant and the linearized Einstein equations hold as

an expectation value in # ',

PR, N> =0,
with f€. 7 . the Scwartz space of test functions, and ¢ lies in
the domain of R in #';

fvpo

Yo ye 7',

(iv) the representation Uleaves # ' invariant, and there
exists in # ', a unique vacuum ¢, which is also invariant
under U and is a cyclic vector for the operator G, (f);

(¢) G,,, obeys local commutativity

(G, ()G, (0] =0 for(x —yp) <0

and transforms covariantly under U, i.e., (a¢,A4 )eSL(2,C),

U@A) G, (x)U@A)y'=A, A

I3}

G (Ax + a):

frr

(d) The Fourier transform of the two-point vacuum ex-
pectation function &G, (x)G,,, ()¢ has support in the
forward light cone V..
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(e) The physical states are elements of the quotient
space 7'/ X "= ,, where %" is the subspace of vanish-
ing norm; U (a,A ) is unitary on # , .
If, in addition to the above conditions, G,,,(x) is re-
quired to satisfy the cluster property (see Refs. 3 and 4) and
R,,,,,(x) is assumed to have the conventional normalization,
then the most general two-point function for G ,,.is found to

be (see Ref. 3)

WX —¥) = (&0, G, (X)G,,, ("))
= — (8,80 + &uo &vp — &yiv Bpo) DX — p)
+ (80 9,0, + 8, 9,0 )F (x — y)
+(g,,9.9,+¢8,,9.9,+¢8,d,0,
+ 810 0,0 )5(x — y)
+8,0,0,0,F(x —y), (1)
where

PYSE  E 1
2Q2m) ]p|

and F,,i = 1,2,3, are Lorentz invariant distributions. Here it
is interesting to note that a subclass of the two-point func-
tions given by Eq. (11) can be derived from a Lagrangian
formulation. Consider the Lagrangian density

f = a%E + fG = G/n«(x)Q “V’)U(a)GpU(x)9
where Q#“"*(A)=Q4*°(d) + Q£7(J) is given by
Q':‘W)"(a) — (g,up gv(f + guff g\y) _ 2g(u' gp(r’)D

(12a)

_+_ (g/u' a) leg _+_ gpu apa\') + (g,up a\'ao

+ gyn a\a? + g"/’ a“a" + g"” au(??)’ (12b)

Q/(ii\ym(a) — %a(g’“" a\.an
+ gwr a\'a/l + gﬂ/! a/zan +gwr a“&))
+ 4b (g'u\‘ alaﬂ +g4:xr 8;48\')

+ 4b g g ], (12¢)

with @, b real constants and | = d,d". 7 isjust the usual
linearized Einstein Lagrangian and ./ is the gauge-fixing
term which can be expressed more compactly in the form
7 g =1bCHC,, where

"
C, = Ci"a)G,, = 3G, +ad,G . (13)

Q'""?(d) is a nonsingular matrix differential operator and so
can be inverted to obtain the graviton propagator, which is
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equal to minus the Fourier transform of its inverse,
1+ 2a
1+a

1
Pyrpa(p) = g((gup 8o + g,ua gvp - g;u' gpo) +

1
X(g;u' pp pn +gpo p,u P») }7)

1+5b
- T(g;t/) pv pa +g;u7 Pvpp

1 1+ 2a
+ w Fu o+ vo M —t ——
8w PuPo + 80 P, pp)pz b +ar

p,u p\' pp p(r

X3 +a+b—2ab) (14)

The corresponding two-point function of G,,,, is

f73%
Il/;u'po (x - )’)

1 J‘ . oy d’p
= P, . (p)e Plyprix—y) Z L (15
sy ) P ® o a
This is the same as the two-point function given by Eq. (11) if
we make the following identifications:

= 14+2a 1 = (1+b)1
Fip)= —==— Fp=-|——]—
(p) Ta 112 v )
~ 1+ 2a 1
F(p)= —————0B+a+b—2ab)—,
«(p) b(1+a)2( a a )p"

where F~', (p), i = 1,2,3 are the Fourier transforms of F;(x).
The propagator given in (14) reduces to the propagator with
linearized harmonic condition as given by Fradkin and Tyu-
tin'* if we let a = — . If we further require 5 = — 1 then
P, reduces to the familiar one with Gupta gauge

conditions
P‘ll\")(f(p) = (2p2)_l(g‘lll) g\'(? + g‘ll(f g\'/] - g[ll\' gl)(f). (16)

Two other important cases worth noting are the Landau-like
gauges which arise when (i) b—c« and @ = — 3, then

P‘u\‘/ul(p)

1 2p,pvPyPu
= _2;; (d/l/l d\'u + d/ur d\yr - g/l\'g/)a E N 1]

4

(17
whered,, = — (g, —p. PP This gauge corresponds to

the Landau gauge in QED in the sense that
Ciita= = PP, ) =0 (18)
and 9'G,, (x) — 33,G!,(x) = 0 holds as an operator equa-

10 -
tion. Case (ii) occurs when b0 and a = — %, which gives

1 2
P/uyur(p) = '27 (d;l/) dwr + d;ui d\'p - ?d/u' d/m)’ (19)

2

satisfying pP,,.,,(p) = 0 and &G ,,(x) = O holds as an oper-
ator equation. We shall exclude the case @ = — 1 since for
such a value of @, Q/*”” is singular and cannot be inverted.

If one chooses the gauge fixing term to be of the form
3
C,=b> 3G, #=0123 and b—cc, (20)
/ ]

e
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then it specifies a noncovariant Prentki gauge!® with the cor-
responding propagator in the form

P p)=Qp)d,, d,+d",d) —d" d°)

gy VT per vy 1y por
Yy

4 g +gd0 +d0 g, +d0 g ) pi

—_ _ 1 2
@ g ‘;—g] @1

where
7 p Ap\'
d;i\ = (1 - g;:())(l - g\()) - g;u' + /—2]’
(§)
g/l\' = g'u()g\()’
andgy,,,, = 8,0 &0 &0 & This reduces to the more familiar

gravitational “Coulomb”gauge if G, (x) = 0, = 0,1,2,3.
Then the propagator becomes

Pljrrlll(p) = (ZPZ)Al(d_un d_‘/u + Jiu a_,/m - aT// Jmn)’
with di, =6, — p,pp”. In this gauge the following operator
equations hold:

3G (x) =0, G'(x)=0. (22)
1ll. EQUIVALENCE OF FORMALISM IN VARIOUS
GAUGES

Define a Hilbert space # with indefinite metric as the
completion of Schwartz space of symmetry tensor valued
test functions ./ (R*) x €' with respect to the sesquilinear
form

g = fof,',‘.(X) W, = g, 0 xd 'y, (23)

fea

o
This form becomes positive semidefinite on the closed
subspace

7' == Der Ep"ji“,(p) =0a.eonC.l,
where C. is the mantle of the forward light cone, and fis the

Fourier transform of £ Let %" be the kernel of the restricted
form'’

K" = e P =D, B P) + P 1, D).
P'h,(p) =0, and h, () (R)}.

Then we can define the physical one-particle space for the
free graviton in covariant gauge as ¥, = ¥/ %"

It is interesting to note that # ; defined above is inde-
pendent of gauge parameters a and b (see also Ref. 3). In
other words, the one-particle physical Hilbert spaces for free
gravitons in various covariant gauges considered in Sec. 11
are the same and coincide with that of the Gupta gauge
(hence we shall denote it by # ;). This implies that the
physical contents of the theory formulated in different co-
variant gauges are the same.

The corresponding one-particle space for the graviton
in radiation or “Coulomb’ gauge is given by
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F cE=H K | fy, =0, p=0123].

Note that the elements of %" do not transform covariantly
as a tensor under the Poincaré group. However, we can still
show that this noncovariant formalism is physically equiv-
alent (in the sense expressed below) to the covariant
formalism.

Proposition 1: There exists a unitary equivalence
W o= H = #'/¥" given by the unitary map

p/lj(‘)v(p) . p\'f;i()(p) _ p/4 p\'./;(‘)()(p)
px) p() pf’}

Vi fnlD) L (p) —
24)

Proof: First we note that (;/f)(,/, =0, =0,1,2,3, forall

fe 7' Therefore # = y#"'. But (I-~y) maps .% " into 7",

7 vanishes on # " and vh (p) = 0 implies 4 (p)e#™". Hence

/" is the kernel of . Furthermore, ¥ is well defined, as can

be seen by restricting to ¥ the Taylor expansion aboutp = 0.
Thus

F@—/ @)+ 1= @)

defines a unique decomposition ¥’ = . % ~& .# " or

Voom ¥ o= HIH" Q.E.D.

We can generalize the above result to Borchers’ field
algebra' for the free graviton. Denote by ., the space of the
n-fold tensor product of #(R*) X C*, with ., = C corre-
sponding to the subspace of the vacuum state and for n>1
the elements of .*, are symmetric tensor-valued test func-
tions £ “(x) = (f (") vy (X1ee0X,,)) Symmetric in x and
satisfying for 1</<n,

(;1"1)\. R VA N § 73R U | (xl"'-9-xn)
:f((/'jr\-‘)‘....(\'//t,), (gL, (xly”-)xn )
Denote by a the locally convex direct sum of these spaces,

@ .”",. If a is equipped with the product defined by

(XY (x1y.0x,,)

H .
= N FOC0x 8" X))

J =0

for all f,geq, and the involution * defined by
()1 x,) = 00 X)),

where the overbar denotes complex conjugate, then a is a *
test function (or Borcher’s) algebra, carrying a natural to-
pology induced by the Schwartz topology of the spaces .,

The two-point function W, ,, defines a positive (semi-
definite) linear functional on a if one imposes the following
transversality condition on a:

D@ ep) = @Yoy Pr) =0,
Vp,eV.,j=1,..,n; and fea. (25)

We shall denote by a, the Borcher’s algebra satisfying Eq.
(25). The the two-sided ideal .# of a, is contained in the
kernel of W, , the n-point functions of G,., and is given by

S =an{(f* =0 and(H

1933 J. Math. Phys., Vol. 20, No. 9, September 1979

:fgz?v‘),....(yj Vihegt, v,,)(pb'"’pj!“"pn)
- - . A s
= (p,u, h,u,(p) +pr/ h\',(p))f;;t,v,)..,.v(,u, Vi, v,,)(pl’“"Pj"“’pn )’

for at least one j, and p* 4, (p) = O¥ h, €5}, (26)

The physical test function algebra for the free graviton in
covariant gauge is then given by the quotient algebra

a, = a,/#. Then through the Gel’fand-Naimark-Segal
construction’® the positive linear functionals on a, deter-
mine a unique theory for the gravitational potential in covar-
iant gauge.

The corresponding test function algebra for the gravi-
ton in the “Coulomb” gauge s then given by

aC = alm{ fea}(f)(n) :f/(:.’,)...,y,, = O lf any /u/ = OVJ} .

Now let /” denote the natural algebraic generalization of the
map ¥ defined in Proposition 1, we then have

a. = Range[ I (a))],
which leads to
Proposition 2: I defines a *-algebraic isomorphism

ae=a; =a,/7.

IV. EUCLIDEAN GRAVITATIONAL POTENTIALS
IN COVARIANT GAUGES

Euclidean formulation of the linearized gravitational
potential in vacuum as a generalized Gaussian Markov field
was first considered by Lim*" and Guerra.?' In this section we
shall give a more detailed discussion of Euclidean gravita-
tional potentials in various covariant gauges, and we shall
see how this can lead to the noncovariant case, which will be
given in the next section.

The Euclidean (or Schwinger) two-point function for
the covariant gravitational potential can be obtained by ap-
plying a matrix transformation, in addition to the usual ana-
lytic continuation to pure imaginary time, to the relativistic
two-point function
SymnXp—yp) =4, 4, —38,8,)A4,,4,,—

1
I‘Smu g/m)

X WHro(x — Y«(f(X<w ‘“y“))’ (27)

where A,/, =1fori=p =123 4,,=iand 4,, = 0 other-

i
wise, and x,,p,. are the Euclidean 4-vectors. Tfle matrix
transformation is necessary not only tochangeallg,,, into &
it also preserves the tracelessness of the factor
8y 8vir + 810 &p — &1 8,.0) DY changing it to
5,,6,,+6,0,, —35,6,,) The Fourier transform, of

S, then has the following general form:

ijmn

iy

5//””( pl;’) =

5

1 ((6:'/)7 6/71 + 51/! 6//)1 - %51/ 5,””)
2p/:' ‘ »

7 pp) :
+ —lzL_((S;jpm Pu + bmn I ,D,)

I
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7 pi)
+ : < (61m PJ pn +6m PJ pm +5m pi pn

l:

ys([’i‘)
4

E

+6jn piPn)+ PiPiPm Pn>- (28)
In order for S, to be the Schwinger function for some
Euclidean field, we require .7 ,( p3), { = 1,2,3, to be nonne-
gative measurable functions.

Define a Hilbert space %" as the completion of the real
symmetric tensor-valued test function space . (R*) X R"
with respect to the topology given by the inner product

s8). = 3 [ 516038 0

We can then define the Euclidean gravitational potential in
the usual manner.

—Ye)ge)d x, diy;.

Definition 2: The Euclidean gravitational potential ¥
with gauge functions .% ,(p%), i = 1,2,3 is the real Gaussian

random field over %~ with mean zero and covariance given
by

E[S(NTS@1=(fg

The Euclidean one-particle space is then given by the quo-
tient space 4 /kernel||-|| . It is clear from our definition
that & transforms covariantly under the Euclidean group.
However, it does not satisfy the reflection property.

Proposition 3: ¥ is nonreflexive.

Proof: Note that the 4/ — 4n component (i.e., Sy, ) of
the two-point Schwinger function contains terms with fac-
tors p; pr *and p; p, °, which allow test functions of finite
% norm localized at the hyperplane x, = 0 of the form
£;(x*) = f,(x) ® 8(x.), with f,;70 and f,(x)e.”’(R?). Clear-
ly, for such a test function 6f,;(x;) = — f;(xz), where 8 is
the unitary time-reflection operator. Therefore, we conclude

that 8% ()8 "% (f). Q.ED.

This result is as expected because in Nelson’s theory the
reflection property (together with the Markov property and
other regularity conditions) is essential for a Euclidean field
to have a Wightman theory in the Minkowski region. For the
covariant gravitational potential the relativistic Hilbert
space has an indefinite metric, hence it cannot be a Wight-
man theory (see additional remarks on this point at the end
of this section).

Definition 3: A covariant gauge for the Euclidean gravi-
tational potential is called a Markov gauge if the matrix in-
verse of the Fourier transform of its two-point Schwinger
function is a polynomial in pj. and the components p,.

This definition includes many interesting gauges such
as Gupta and harmonic gauges as the Markov gauge. The
reason for such a definition is ¢lear from the following result.

Proposition 4: The Euclidean gravitational potential .%
in the Markov gauge satisfies Nelson’s Markov property

Proof: If we write Eq. (27) as a matrix equation
S(p,.) =AW (p.ip,). then S (p,) = W '(p,ip,)4 .
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Since A is just a constant nonsingular matrix, its inverse is
again another constant matrix. From Egs. (12), (14) and (15)
we get W- '(D,ipo) = O ( p.ipy) as a matrix polynomial in p
and p,. Now Q is just a matrix local differential operator

hence the argument of Nelson for the scalar case applies (see
Refs. 10 and 11).

We note that Definition 3 does not include Landau-like
gauges as Markov gauges. However we shall show that for
such gauges the Euclidean gravitational potential is also
Markovian in Nelson’s sense.

Proposition 5: The Euclidean gravitational potential .7
in the Landau-like gauge satisfies Nelson's Markov
property.

Proof: The correct two-point Schwinger functions in
Landau-like gauges are obtained in a slightly different way

SI//)H]( -~ Vi ) = A A A A w /l\'/)(!(x .

mp o
where 4, is defined in the same way as before. Then we

obtain for the two cases of Landau-like gauges the following:

y,l'(xu - }70)),

N 1
(1) Sijmn(P) = 2 (dim djn + din djm - (Sij 5mn
Pr
o zpipjpmpn )
P

whered, =8, — p,p,p, °. Like in the Minkowski region,
we have

2(p1 6 )S/mn(pl )_

(“) ‘i/r)z;;(plz') - 2p dmz d/n + dm d/m - %dij dmn 4

I

which satisfies
Z p' S/nm( P/;) - 0

For Case (i) we shall consider one-particle space with posi-
tive metric as %", C % with elements satisfying

S, [ p; fi{pr) — 5p; fi( pr:)] = 0. Then for any element
heC ~ (/)X R'", where < CR* is an open set,

zpi §j/rrrl(pE)Hrrxrx(plf) - % Zp/ S~1imn(p1:‘)};mu(plf) - 0

i.e., S, maps every element of C * (/)X R" into an ele-
ment of %" (7). Furthermore, for f,ge %",

m 5':
z Jf;j(pl p gmn(pf)dpl-

ijamn

(f&), =

= };_[ £ pe

Clearly, we can again apply Nelson’s argument to complete
the proof.

The proof is similar for case (ii). We consider the one-
particle space with positive metric as 4", C.%" with ele-
ments satisfying 2, p; f,j(p,;) =0and 2, f,(p,;) = 0. Again
for any heC = () X R",
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Zpi :g‘l’jmn(pE)/{mn(pE) = Oand

Z Siimn(pE)};mn(pE) =0.

Thus S, maps every heC *(Z) X R" into an element in

& (7). Finally we note that for any f,g,€.%",,

Z d'pg
(f.8).» szMj(PE)|2 7
i Pe
so that Markovicity of the field follows by Nelson’s
argument.

Before we discuss the Euclidean gravitational potential
in noncovariant radiation gauge, some remarks on the co-
variant case will be given. First we note that the failure of the
reflection property is an essential feature of the Euclidean
gravitational potential in a covariant gauge. The effect of the
reflection property may be considered so as to prevent the
theory from being too regular in its ultraviolet behavior. It
can be seen in Nelson’s theory that the reflection property
excludes scalar boson fields with covariance functions of the
form ( — 4 4+ m?) ", n> 1, which are regularized propaga-
tors without ultraviolet divergences.?? However, such fields
either give rise to Hilbert spaces with indefinite metric or
nonlocal theories without unphysical states, thus they can-
not be Wightman theories. Furthermore, the reflection
property is necessary for the proof of the self-adjointness of
the free Hamiltonian; however, this can still be achieved if
one restricts to physical space with positive metric.

Since both free Euclidean photon and graviton poten-
tials in covariant gauges are Markovian and nonreflexive, we
want to find a more general property to describe these Eu-
clidean massless fields in covariant gauges, yet still exclude
nonlocal theories such as those with propagator of the form
(—4 +m»)", n> 1. This can be done as follows. Let
(£2,2,1) be the underlying probability space for the Euclid-
ean random field @ with one-particle space . For any
open set & CR*, let %7(£) be the closed subspace generated
by {fe% |supp fC £}, and let £ ,. be the o algebra generat-
ed by {@ ()| fe %" (7)}. Denote by .#™(7) the subspace of
K (), consisting of measures, and let I % be the Borel o
ring generatedby { @ ()| fe.%°(£)}. Foranysubset.# CR?,
let £, be the intersection n{ X0 |7 D.#, # open}. Then
we have

Definition 4: The Euclidean field @ is said to satisfy the
classical Markov property if, for every function & :2—R
which is X', measurable and for every open set Z CR*

E[#]2, ]1=E[#]Z] ]
is valid, where 7' is the complement of # in R*, ¢ is the
boundary of Z and E [-|-] is the conditional expectation.

The Euclidean electromagnetic and gravitational po-
tentials in various covariant Markov gauges satisfy the clas-
sical Markov property. In fact, for these massless fields, the
classical and Nelson’s definition of the Markov property co-
incide since 3%, coincides with

Z, =n{Z |7,Cad}.

11

Actually one can also work with the Euclidean gravitational
field tensor & (for the linearized theory in vacuum),

jmn
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which is related to % ; by
4

ijmn

=14(9,0,,9,—,0,9y+ 3,0, 7, —3;0,, 7 ,].
One can show that 7, satisfies Nelson’s Markov property
by using an argument similar to that given in Refs. 23 and 24
(see also Ref. 25 for a simpler proof). Now %, is reflexive
and it leads to a Wightman theory in the Minkowski region.
However, the underlying probability space for %, is in
general smaller than that for .7 ; because all the elements of
the o algebra generated by .4, correspond to physical
states in relativistic theory, whereas the elements of the ¢
algebra generated by .# ; also correspond to unphysical

states in addition to the physical ones.

V. EUCLIDEAN GRAVITATIONAL POTENTIAL
IN RADIATION GAUGE

A natural question which arises from the above discus-
sion is whether there exists a suitable subspace of .} for
which both the reflection and Markov property are fulfilled.
The answer to this question leads to the consideration of the
Euclidean gravitational potential in noncovariant **Cou-
lomb” or radiation gauge.

Consider the subspace .#”, of .4 considered in the pre-
vious section (see Proposition 5) with elements satisfying the
tracelessness and transversality conditions 2, £, = 0 and
3,4, f,; = 0. We can define the one-particle Hilbert space for
Euclidean gravitational potential in ““Coulomb” gauge as the
closed subspace

K e= Kol =0, j=1234].

Note that we can decompose .4, as follows:

K= e N,
where . 7, is the subspace of “longitudinal” elements of the
form (P,f4_, +ij,4)l74 : ‘*P[P/fu Pa *. Clearly such a de-
composition is not Euclidean invariant.

Proposition 6: The Euclidean gravitational potential in
radiation gauge ¢ .- satisfies the reflection property.

Proof: The proof is straighforward, which follows from
the fact that .4 ;= 0 for j = 1,2,3,4, and the definition of
the reflection property.

Q.E.D.

This result agrees with our earlier remark that the re-
flection property is closely related to the positivity of the
metric of the relativistic one-particle space, which for the
case of % .is positive.

Proposition 7: The Euclidean gravitational potential in

radiation gauge ¥ .- satisfies the Markov property with re-
spect to the half-spaces bounded by x, = constant.

Proof: Let E . and E, be the projections onto the sub-
spaces of %", with supports in the hyperplanes
R*, = {R*x,s0} and R} = [R*|x, = 0}, respectively, and
E ¢, and E § the corresponding projections in %" .. Let 6 be
the unitary time-reflection operator

0:£,(P)—(~ 1" " f,(0. — po).
Then to show that ¥ - satisfies the Markov property with
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respect to the half-spaces x, = 0, one needs to show that
E € 6E < is a projection.'>*

Consider the decomposition

SE L OE [y =00 )0+ 00 )y
First we want to show that (/" ,0f B ) 4 = 0. Since each
fLe'z/‘ 1softheform(p f:tj +pjf;4)p4 plpjﬂ4p4 7and

E,BE_ = EC+ gEC+ ® EL+ HEL+ . K, CH 5 50 usmg the tracelessness condition we get
'/
Then for f&.%, 52 o _ 22 (29)
i p H P4
Therefore,
(/T‘L+ )e.fL+ >.1”
_ ZJ- d‘pg I:(sz:ty(l’z-:) ‘i'!’j.f:i‘:r (PE) D ij44 @g) (Pz f4j (Pe) +171f4 (PE) Di P,fIZ (PE))]
7 VR pé Da D4 Pi
-3 d: s (p.fs@e)+p,fi 0r) pfpij(pE))( —r Sy ®—P)—pfi®—p) _ Pip W ‘P4)>
ij JR* \ Da pi D Pi

r,]R

Pa

d: e [(p,»ﬂ,*-(ps) +p,-f.r(p5))2 B (p.- pjﬂt(pE)ﬂ
PE

_ d'pe [( 2pjf~i4+(pE))2 _ ( zpjfiI(PE))z] .
- EJL 7 2 ps =0

where we have used Eq. (29) for the last step. Thus we have
obtained E.OE, = E <, OE <, . Using the fact that %" is in-
variant under 6, it is not dlﬂ"lcult to show that E ¢, 0E € >0.
Finally we want to show that (E< 6E< > =E <, c 6E <
Again, making use of the time- reﬂectlon mvanance of .2’/ cs

FEAESOECYSfL) ) =L OECOE)
= dOES f&)

=& ECOE L) s
Then, following the same argument as given in Ref. 12, one

obtains the result ES E€ =E§.
Q.E.D.

Note that for the construction of relativistic fields the
Markov property is needed for open half-spaces {x |x,<s}
only. Actually Nelson’s Markov property is a rather strong
condition and up to now there still does not exist any nontri-
vial model which satisfies this property. Thus the correct
condition for Euclidean fields seems to be the Osterwalder—
Schrader positivity,””** which is weaker than Nelson’s Mar-
kov property (for further details on this point see Refs. 26
and 29).

One can recover the relativistic one-particle space %

from %"~ in a similar way as given by Osterwalder and
Schrader (see Refs. 26 and 28). We note that (6f & .8 ) »
defines a positive semidefinite formon %" & X ¥ ¢, This is
none other than the positivity condition of Osterwalder and
Schrader. If we denote by #7. the real 77, then we have

Proposition 8: 57 is isomorphic to the closure of %7/
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[

kernel||-|| -, with the topology given by (f..g.) ;-
= <6ﬁ’g*>./5/"

Now we can establish the Feynman-Kac-Nelson for-
mula for the free gravitational potential in radiation gauge.
Let .#’(M') be the space of square-integrable functions on
the sample space M of & ., which are measurable with re-
spect tothe o algebragenerated by { & - (f)|feM }. Denoteby
J the projection of .¥*(%",) onto X5 ), and T, the in-
duced unitary action of time translation in %", with
T.f(x,x,) =f(X,x, — s). Then we have

Proposition 9:
e M =JTu, ucL*(¥7),
and H, is the free Hamiltonian in (7).

Proof: This can be considered as a result for %" rather
than %", because #7. C.% .~ and ¥ . is closed in %", and
also closed under time translation as well as under complex.
conjugation. Consider those fe. %" - which are C ~ functions
with compact support such that their Fourier transforms
and their derivatives vanishif |p, | <€ for some € > 0. Suchf
are dense in % . If fand g are two such functions, then for
each real s, the functions f (X)—f (x,5), g(x)—g(x,t) are in
#7". Then by a direct computation

{8

-3 )

Since %" is the closure of the space of such functions, it
follows that the time-translation groupin % .is the minimal

Lle~ lr—s) |P|f;,j(x’s)g’y(x,t)] wr dt ds.
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unitary extension of the semigroup e ~* 'Plin #7.. The rest of

the proof follows just as in the scalar case (see Ref. 13).
Q.E.D.

Finally we should like to consider whether or not a re-
sult similar to Proposition 1 holds in the Euclidean region.
This is in fact the case if we define the Euclidean one-particle
“physical” space for the gravitational potential in covariant
gaugeas ¥ ;= 4"/ %", where %" is the closed subspace
of 4" with vanishing four-divergence 2, d, fj{(x;) = 0, and
%" is the subspace of vanishing norm. Then we have

Proposition 10: There exists a unitary map given by

- . pfy  pifa pipf
ve Sy — Yo 12
P P Pa

3

which defines a unitary equivalence ¥ ¢ =%

= %"'/". The proof is similar to Proposition 1, therefore
we shall omit it. This result can be generalized to Euclidean
field algebra (or Schwinger algebra) in the same manner as in
the relativistic case.

VI. CONCLUSION

The Euclidean formulation of the linearized gravita-
tional potential in covariant gauges seems to have some nice
features. The difficulties due to gauge problems do not arise
in the Euclidean field, here the covariance and locality (in
the sense of the Markov structure) properties are compatible
with the positive metric of Euclidean one-particle space.
Even in noncovariant radiation gauge, the Euclidean gravi-
tational potential does have some kind of local structure in
the form of the Markov property with respect to special half-
spaces. It would be interesting to see whether the Euclidean
method can be of any use in other gauge theories such as the
Yang-Mills field.
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We show that all 77 spaces (self-dual solutions of the complex Einstein vacuum equations) that admit (at
least) one Killing vector may be gauged in such a way as to be divided into only five types, characterized by the
type of equation which determines their potential function. In four of these types we show that this knowledge
is sufficient to reduce the requirement of being an /#” space to a linear equation whose solutions are well

known. The fifth case is reduced considerably and a large class of special solutions is given.

I. INTRODUCTION

This paper is a continuvation of our studies on the struc-
ture of heavens (% spaces). We recall that these ¥ spaces
are solutions of the complex vacuum Einstein equations with
a Riemannian curvature whose anti-self-dual part vanishes.
These spaces have been studied extensively (by different ap-
proaches) by groups associated with Newman,' Penrose,’
and Plebanski.’ We follow here the notation and approach of
Boyer and Plebanski.*

In coordinates {x,y,u,v}, all # spaces may be thought
of as determined by solutions to the single equation® for the
potential function 6:

6,\:\6};\! - (9,(»’)2 + exu + va =0 (1 1)

This is clearly a difficult equation, whose general solution is
not known, although many interesting families of solutions
are in fact known.*” It has also been shown* that the general
solution is determined by rwo arbitrary functions of three
complex variables.

Quite often in the past, solutions of Einstein’s equations
have been generated by the desire to have particular symme-
tries. Therefore, it is very interesting to better understand the
relation between the solutions and the allowed Killing vec-
tors. In Ref. 8 a single master equation has been given which
gives the required correlation between the potential © and
any allowed Killing vector. However, as is usual in problems
in general relativity, the quantities in it may be subjected to
various gauge conditions. This fact causes unknown func-
tions of two variables to appear in the master equation
which, in any given case, could be gauged away. In particu-
lar, we know that there are certainly not more than ten Kill-
ing vectors in our (four-dimensional) space even though
there appear to be arbitrary functions in the master equation.
These functions merely indicate the gauge freedom available

"Work supported in part by the Fomento Educacional, A.C., México 5,
D.F., México, and by the C.1LE.A. del .LP.N., México 14, D.F.
"0On leave of absence from the University of Warsaw, Warsaw, Poland.
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in determining a space by giving a potential @ in a specific set
of coordinates.

Therefore, in this article we first look in detail at the
group of gauge transformations’® which leave invariant the
form of the tetrad in an /%" space and, thereby, the form of all
results obtained from it. Then we utilize these gauge trans-
formations to separate out the distinct kinds of single Killing
vectors allowed. This is basically a quotient of the infinite
group of symmetries of the manifold possessing a single Kill-
ing vector by the infinite group of gauge transformations.
This quotient results in a finite number of distinct types. We
then consider, in turn, each of these types and find the con-
straint which the existence of a single Killing vector of the
type specified puts on the potential function. Incorporation
of this information into Eq. (1.1) allows an explicit determi-
nation of the class of allowed solutions in all cases but one.
We show how these solutions may be determined and discuss
in some detail the one irresolvable case. In each of the cases
we point out the (complex) Petrov types which are allowed.
We also show that this is very closely related to current ques-
tions of interest involving Yang—Mills and gravitational
instantons.

H. TETRADIAL GAUGE TRANSFORMATIONS IN .7
SPACES

One of the most useful facts about an %" space is that it
admits two congruences of totally null (two-dimensional)
surfaces. These congruences determine complementary foli-
ations of the total " space, providing us with three natural
coordinatizations, each of which is most conveniently ex-
pressed in a (two-component) spinor formalism. Since each
of these sets of coordinates will be useful, we will describe
them here, their relation to each other, and convenient tet-
rads formed from them.

We denote the 2-form describing one of these congru-
ences of totally null surfaces by 2, which must be closed and
simple. Therefore we may pick a pair of coordinates g ,
which label the leaves of this congruence

3 =dqg* Ndq, = 2dq, Ndg-. 2.1
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Similarly, the other congruence, 3 allows us to have another
pair, g5, such that

3 =di®Ndiy. (2.2)
(The spinor indices are raised and lowered viae *? and €, , as
usual.’®) These two congruences completely determine the
space, so that ,

I N340, (2.3)

which says that the two pairs ¢ ,, §; form a coordinate sys-
tem for the space.’*'* We may express the metric g in terms
of the symmetric tensor product of coordinate 1-forms, a
null tetrad basis, or a spinor basis of 1-forms:

g=g,,dx"®dx"=2e ® er +2¢° ® et

= 16" % g (242)

where

_ — ot 2

gt = \/2(e1 e}). (2.4b)
e —e

It is shown in Ref. 3 that the space is an #” space when

g=2P"dq, ® dgp,
Q.5)
%Qq.quﬂq 5 — 1 - detPAB,

P,p= .Qq g and G
where the notation X, .is consistently used for dX /3q™.

It is convenient and natural to choose a tetrad which
takes advantage of the fact that these congruences are inte-

grable. We therefore find two different tetrads to be of use:
et=12" 1/2g,4i — qu’ E4=2" 1/2g,42 — pAB diy,

or (2.6a)
A=2" 1/2gAz — déA, ’E"A _ 1/2g,4i — pBa qu’
with

g=2£E"@e,=2E, 8¢, (2.6b)

Noting that P *? itself may be considered as an element of
SL(2,C), and looking at the complex Lorentz transforma-
tions as SL(2,C) ® SL (2,C), we see that these two tetrads
are related by the complex Lorentz transformation generat-
edby P ,in SL(2,C) and the identity in SL(2,C). In the two
cases, then, we may, as well, work out the usual (null) bases
for anti-self-dual and self-dual 2-forms:

s =e'Ne, =EB/\EB=Z,
SR =" NE,— EBNé,,
- 2.7

S¥=ENE,=éNé, =2,

S =2e"NED =2E“ N,
This choice of tetrad also has the very convenient feature
that I"; ; = 0, by virtue of the above anti-self-dual 2-forms all
being closed. We see that these two tetrads are related by the

complex Lorentz transformations generated by P, in
SL(2,C) and the identity in SL(2,C).
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Two (parallel) alternate coordinate sets are suggested
by the constraint equation satisfied by {2, which may be in-
terpreted as saying that

A2, 32

1 =detP, ;= e = . (2.8)
a@G") ag")
This suggests that either of the sets
{90Ps=102 1, (P4 =02,.4p} (2.9)

may also be used as coordinates. It is easily shown that the p,

(alternatively the p~ ) are affine parameters along any mem-

ber of the congruence X (alternatively 3). Therefore one set

is associated only with properties of X, the other with 3.
From Eq. (2.6) we find that

E'=0,, dj;=d0, —0,, dg,

G198

Again, following Ref. 3 we define a new function
6 = O(gq,,pg) such that

ep Pe 0‘1.4‘]!« = — Q" (2.10)
and have a tetrad based on %,
e'=dq', E'= —dp'—Q*®dq, 2.11)

Similarly we can have a function 6=6 ( P 445) such that
Eqgs. (2.10) are repeated, but with tildes everywhere. In Ref.
3 the constraint equation for ©—analogous to Eq. (2.5) for
{2—is found to be

%9 epApn + ep ‘q.—| = O

PPy (2.12)
There is of course an identical equation for @ in terms of 5 ,,
¢ . In this form of the coordinates we record the simple form

of the connections and the curvature.
_— - C
Iyy=0 Ip=— O, €,
(2.13)

CABCD =0, CABCD =0, R=0, CABCD = epA P p< p

We now wish to point out that any spinor coordinate g ,,
maintaining £ « dg”* A dg , is as good as any other. There-
fore we wish to consider a transformation’® to new param-
eters ¢'x = q'r(q.4)s

dq'x = Dr'dq, A=detDy"0, (2.14a)
which is only a relabeling of the leaves of the congruence.
Since the particular form of the tetrad has been important in
the derivation and final form of both the equation which the
potential @ satisfies and the master Killing equation, we en-
deavor to determine a new set of affine parameters for each
leaf which will maintain this form. It is well known, of
course, that affine parameters are only defined up to linear
transformations. However, there is no reason why the linear
transformation in question might not be different for each
leaf. With this motivation it is easily seen that the desired
transformation properties for the coordinates p* are given by
pR=D ' Rpt4 ok, (2.14b)
where the o ® are arbitrary functions of the ¢, only. The set
of equations given by (2.14), when inserted into Eq. (2.11)
for the tetrad show that this is the gauge group of transfor-
mations which are generated by the relabeling hypothesis in
Eq. (2.14a) and which preserve the form of the tetrad. How-
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ever, we had also arranged for the I j; to vanish. This is a
very reasonable choice and should be maintained by this
transformation. In order to determine this constraint we cal-

culate the SL(2,C) ® SL(2,C) (complex Lorentz) transfor-
mation generated by the transformations (2.14). They are
easily expressed by the transformation properties of the S 42
and § 18

S/RS:LRALSBsAB, SIRS=LRALSE»SAB,

. . A + 172 0
R R — >
L%i=M A:(hA 124 ‘1/2)’

where h =10 .. Since
F’RS:LR‘ALSBFAB—?-LRAdLSA _
=L "ML "0 ig + L 7 jgdL Mg (2.16)

(2.15)

itis clear that the necessary and sufficient condition to main-
tain I" 'z ¢ = Ois that A and 4 should be constants. We there-
fore re-collect the transformation equations here with that
proviso, denoting A and 4 now by 4, and A,

dg'x =Dp'dg, =4 L '“pdg,, L ';eSL(2,C),
(2.14)
pr=D" IARPA + %hoq’R +Pq

where the degrees of freedom are given by L ~ ', eSL(2,C),
p an arbitrary function of ¢’ and two constants 4, and 4, .
The transformation laws can be completed by noting that the
potential function O transforms in the following way:

A36’ :9+%LRC(L RB)q|pA Ps Pc

~3Pguu PaPr T A Py Y 2.17)

where A “ and v are new arbitrary functions of g, only, which
generate gauge transformations of @ only, inits role as a
potential function.

1Il. CANONICAL FORMS OF MASTER KILLING VECTOR
EQUATION

We now recall the master Killing equation from Ref. 8,
adapted to the special case of an 57" space. Any allowed Kill-
ing vector may be written in the form

_ A a4y O B ad
K—(aop +5 )é_q_A +(——2a06p,'+6q4p8+€A)apA)
(3.1a)
with
8'=%poq' +@,, €'=—-Lr.q' +o,, (3.1b)

where ay, pq, 7, are constants while ¢ and o are arbitrary

functions of ¢, only. In order for a manifold to permit any

particular Killing vector the potential function © must satis-

fy the master equation

KO =2p, 0 + 20/ + oy n P p* P°
20 g P P+ bt + (3.2)

where ¢ and 7 are some new arbitrary functions of ¢, only,
while A is a higher-order potential function, defined by

M, =6,+16,6, ., (3.3)
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whose existence is guaranteed by the heavenly equation
2.12).

These constraint equations guarantee® the satisfaction
of the complete set of Killing equations, which can most
easily be written for our purposes in spinor form'' (where
Kp®= —1g 2%*K_with K being the components of the
Killing 1-form)

V. AKpE =€, + €81, (3.4
where /48 and / «p are symmetric and satisfy the constraints

P AIBC = - 2CABCNKNA7 (3.5a)

VA5 = — 20K,V = 0. (3.5b)
Equations (3.5) tell us that /. and / 2€ are very important in
the description of our Killing vector. In particular Eq. (3.5b)
shows that / #“ must be constant in an 5 space. Our solu-
tion, determined by Egs. (3.1) and (3.2), of course already
satisfies this constraint, but it will nonetheless be of consider-
able use to us,

IBC _ (20‘0 pO)
Po Yo
There is of course a matrix /¢ for every Killing vector
allowed by a particular solution. Under an arbitrary
SL(2,C) gauge transformation, L R 4> [pe transforms as a
pure spinor quality,

erS‘:__ L RA_L SBIAB.

(3.6)

(3.7)

The quantity / ?¢ I, = 2 det(l;¢) is clearly invariant under
such a transformation. Therefore by using the transforma-
tions L X ; an /4 for any one given Killing vector can always
be reduced to one of the following three canonical types:

y /0 0 y 0
I. [P¢—0, IL IBC:( ) 111 1“:( p")‘
0 po O
(3.8)

Note that the fact that /- is constant is quite important here
because we must look only at constant SL(2,C) gauge trans-
formations so as to preserve I" 'z = 0. [See Sec. 2.] We have
also deliberately made choices of the canonical forms which
do not involve a4 since it multiplies A in Eq. (3.2) whichis a
more complicated quantity than O itself. Such a choice
eliminates the need to work with A for the specific Killing
vector under consideration.

Unfortunately, the set of tetradial gauge transforma-
tions considered in Sec. II do not include all possible ele-

ments of SL(2,C) since they only generate L *; which are
lower triagonal [Eq. (2.15)]. However, we also consider now
the possibility of starting with the coordinate system {§*,g; |
based on 3. A completely analogous set of tetradial gauge
transformations based on 2 is generated by

d§'g=Dx"dg, p*=D"","p"+3"%

detDg? = Ay, 45 .« = K, constants, (3.9)
LR, =A4YD "

A — 172 A 1/2
LRAzﬂRA'E(AO }LOIA/ZO )

0 , A}
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Clearly an arbitrary product of MR ;and M S, would gener-

ate an arbitrary L ® ,€SL(2,C), so that the canonical form of
an [z may always be effectuated by a combination of such
transformations. By looking in more detail one sees that an
Ipewith @, = 0 may always be put into the forms in Eq. (3.8)
simply by a transformation of the type M % ,, i.e., by relabel-
ing the leaves of only the one congruence, 2. However, for a
Killing vector with a0, one notes that

<2a0 Po) _ ( Yo Po )
Po Yo Po  2a,
so that a transformation to ¥, = 0 (if necessary) and then
passing to the coordinate system based on 3 causes dgtobe
zero and the passage to the appropriate canonical form may
be completed in these coordinates. We therefore always as-
sume that this has been done for the single Killing vector of
interest here. However, we do not write any tildes since, of
course, the two sets are isomorphic. In Appendix A we give
an explicit procedure by which one may proceed from

6 = 6 (p",qp) to the corresponding 8 = 6 ( 5,4,). (Also,
in Appendix B we determine the explicit forms for the ten
Killing vectors in the flat space corresponding to @ = 0,
showing that nonzero «, is essential when dealing with suffi-
ciently many Killing vectors at once.)

(3.10)

We now show that the terms due to the functions ¢ and
7 in Eq. (3.2) are completely gauge dependent, i.¢., they can
always be gauged away. To see how this occurs, as well as
some other gauge transformations we will need, we include
here the transformations of the quantities @, o, etc. which
appear in the master equation. These transformations are of
course defined in such a way that the equations (3.1) and
(3.2) remain form invariant under the gauge transformations
of Sec. II. Under the assumption that & has already been
transformed to 0, we obtain

8r=Dr"5,

3.11)
e€S=D 'S+ (pq,ké’R)q,\ + 2hy 65,

while, of course, p, and y,, separately transform as indicated
in Eq. (3.7).
We first consider a transformation
O'=0 +£, P4+
which causes a transformation of ¥ and 7:

¥ =9v+ P()§_5A§q" 771277+6A§q'_5/4"q"
(3.13)
It is clear that these equations can be considered as first-
order partial differential equations to determine § and v in
such a way that ¢’ and 7’ vanish and that they always have
(local) solutions so long as & *=40. Further, now consider the
translation

(3.12)

pt=p" +py . (3.14)
We find that o transforms as
gd=0+8"p,. (3.15)

Clearly when 67540 we may always choose pinsuch away as
to guarantee o’ = 0.
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On the other hand, if §* = 0, €40, then Eq. (3.13) still
assures us that we can arrange for " = 0. Then the transla-
tion [Eq. (3.14)] now leaves € invariant, but causes

0'=0-1p,.p"'p’
which transforms # to
V=y+ GAP,,' —Yop-

It is again clear that p may always be found so as to cause ¢
to vanish. Clearly if both § * and ¢ * vanish (along with «,))
then there is no Killing vector. Therefore we have shown
that we may always gauge away the terms in Eq. (3.2) gener-
ated by ¢ and 7. (We refer to this result as Lemma 1.) More-
over (when a, = 0) o must be retained only when 67 =0
(Lemma 2). In the process we have used up the gauge free-
dom embodied in a A “ of the form of £, , and v from Eq.
(2.17) as well as the translations generated by p.

One more lemma is required before actually making the
reduction to canonical form. Suppose that 3 * is some func-
tion of g, (forinstance § * or € *, whichever may be nonzero).
Then we can use a choice of D to align the coordinates in
the direction  “ in one of two ways, depending on whether
/8, vanishes or not. First, if 8 140, B Aq, = 0, then there
exists bsuch that 8 * = b, and we may surely always choose
new coordinates g such that one of them is b, say g, where
Z is a fixed choice of index, which sets # * = §*,, the Kron-
ecker delta (Lemma 3a). On the other hand, if 8 “‘q. =b,,a
nonzero constant, then there always exist two functions S *
such that 8 *dg, = b,S "' dS*. Furthermore § 70 im-
plies that we can always find a transformation ( just a two-
dimensional canonical transformation) such that ¢'’* = S ®.
This implies 8'' = b, ¢'', B> = 0 (Lemma 3b).

Assuming that all of the above transformations have
been done we are ready to see that there are in fact only five
independent situations for the existence of an .#” space with
(at least) one Killing vector. First we consider case I, in
which all of a,, p,, and y, vanish for the Killing vector in
question [see Eq. (3.8)]. If both § * and € ! were to vanish as
well, then there would be no Killing vector at all; therefore,
one must be nonzero. If § =40, we gauge away € * and note
that§“ . = p, = 0. Therefore Lemma 3a allows us to choose
coordinates so that ¢ = g, (here Z is a specific choice of
index, either 1 or 2) and the master equation reduces to

K6=6,=0 (Case Ia). (3.16)

On the other hand, if 6§ = 0, € *540, e/’q. = 7, = 0, then
again Lemma 3a may be invoked to pick coordinates so that
0 = g, (Z fixed to be either 1 or 2) and the master equation
reduces to

K6=6,=0 (Case Ib). (3.17)

We also note that these Killing vectors of Case 1 are just
exactly those Killing vectors which can be generated from a
D (1,0)[or D (0,D)] Killing spinor.® Therefore it is shown what
at least some portion of the role of such Killing spinors is in
H spaces.

The second case, where / BC#O but det/ 5€ = 0 is de-
scribed canonically by a,, = 0 = p,, 7,50, which implies
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84, =0,€" ,50. In the situation that § “-0, then Lem-
mas 2 and 3b may be invoked, and a choice of 4, may be

made to normalize ¥,, so that we obtain

I 1y 9
aql ap4
In case §* = 0, then o may nontheless be gauged away be-
cause ¥, 70. This follows from Eq. (3.11) which can be ma-
nipulated to read

(o' — U)q'\ =574 lqls -D - IASqA)~
The integrability condition, then, to find D ~ ', such that
o’ .« = 0is simply that the right-hand-side of the equation
should be a gradient, which is equivalent to the requirement
that (4, ', 8 —D ~',%") . =0, which is seen to be the
case upon explicit calculation (Lemma 3c¢). Therefore we are
left with

K6:( )9:0 [Case IIa]. (3.18)

KG:q”’a—a—49=0 [Case TIb]. (3.19)
s

Lastly in the case I11, where det/ 2520, the canonical
form of Eq. (3.8) has a; = 0 = y,, po5=0, which tells us that
8£0. Therefore we may always gauge away o and use
Lemma 3b to acquire
i1 i ’ 2
9q ap

1(6=(q1 )9: — 20 [Case III].

(3.20)

We have thus shown that the arbitrary functions of two var-
iables appearing in the master equation had two roles. One
was to simply allow for all the possible gauge freedom in
choice of coordinates and potential function 6. The other
much more important function was to distinguish these five
types (six if you also include the possibility of the nonadmis-
sibility of any Killing vector). That is, the “quotient™ of the
two (infinite) gauge groups is finite.

IV. APPLICATION TO THE HEAVENLY EQUATION

We now proceed to show that the knowledge that a
manifold admits a Killing vector allows one of course to
determine a form for @ in terms of a function of only three
variables and that this information inserted into the heaven-
ly equation (2.12) is sufficient to allow a determination of all
such functions @ in cases I and II. In case III the equation
simplifies but still does not yield completely, as will be
indicated.

Case Ia evidently has a simple solution—that @ is inde-
pendent of one of the labeling variables, ¢*. Arbitrarily we
pick that one to be v. Since this breaks the spinor symmetry
we write the corresponding version of Eq. (2.12) in the form
given in Eq. (1.1),

6.6, — 6, +6,, =0 (4.1)

xxyy
This equation can be modified so as to become linear by
means of a Legendre transformation. Set

p=06, y=px—O0=1y(pyu), (4.22)
which implies
x=¢, 6O,=-1, O0,=—¢, (4.2b)
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Equation (4.1) may be written in terms of the 3-form
dO,NdO ,Adu + dO NdxNdy =0.
Inserting Eq. (4.2) into this we find that

lr//yy + Ippu = 07 (43)
which is just the three-dimensional Laplace equation. There-
fore every & space having a Killing vector of type Ia is
characterized by a solution of the three-dimensional Laplace
equation, whose solutions are all well known. For an ap-
proach particularly relevant to the philosophy used here see
Ref. 12 where applicability of complex-valued integral re-
presentations is discussed. We point out that these solutions
are rather general and include all possible Petrov types.

Case Ib also has a very simple solution; O is indepen-
dent of one of the affine variables, p*, say x. In that case, Eq.
(2.12) becomes simply

6,=0

v ’
the two-dimensional Laplace equation, the solution of which
isof course just © = F ( y,u) + G (v,u). However, in this case

we may still use the gauge freedom of the arbitrary function
v(g,) in Eq. (2.17) to eliminate G. Therefore

6 =F(y,u) 4.4)

is the form of @ for all Killing vectors of type Ib. These are
justthe [N ] ® [ — ] spaces already discussed in some detail in
Ref. 3. (An affine parameter is a Killing variable only for an
# space of Petrov type [N]o [ —].)

For case I1a the form given in Eq. (3.18) for the Killing
vector has considerable symmetry. However a form which is
muc